

Status of Compute Node Development for PXD System

Zhen'an Liu, Dehui Sun, Qiang Wang, Jingzhou Zhao, <u>Hao Xu</u> xuhao @ihep.ac.cn

TriggerLab, IHEP, Beijing

7th International Workshop on DEPFET Detectors and Applications Ringberg Castle, Germany, MAY 9-11, 2011

Outline

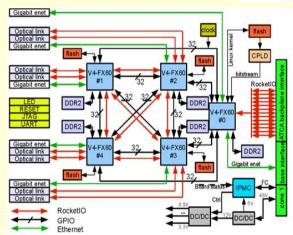
- Progress on CN
 - 10 boards production for PANDA and PXD firmware development
 - Algorithms development on CN
 - Data flow and MPMC DDR2 memory throughput test
- xTCA compliant CN development
 - xTCA carrier board
 - AMC modules
- Summary

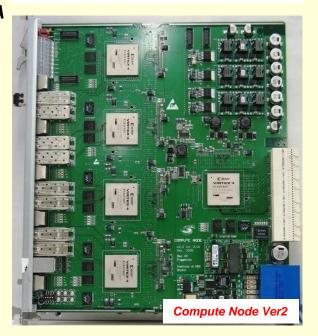
Compute Node

An universal high performance platform prepared for multiple applications.

ATCA compliant (Full Mesh topology in backplane) and FPGA-based (now Virtex4).

High Computing power


- •5x (Virtex4 FX 60 FPGA + 2GB DDR2 + 8SFP) for PANDA
- •5x(Virtex4 FX 60 FPGA + 2GB DDR2 + 8SFP+) for PXD

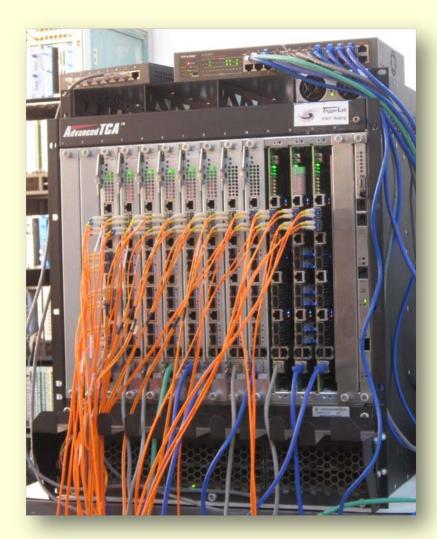

High bandwidth

- •6 xGigabit Ethernet (one on backplane base channel)
- 8x Optical links
- •13x RocketIOs to backplane

Embedded system design

- System-on-FPGA design
- Open source Linux
- General system designs + customized processing units for different algorithms.

Boards Production



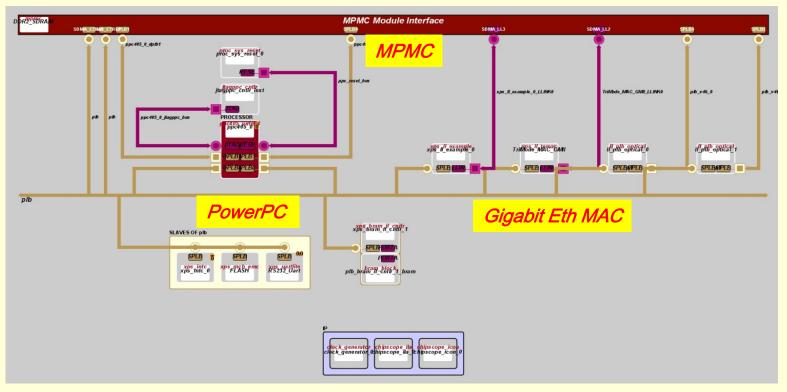
Requirements from PXD

- 5 FPGAs/CN
- Gbit Ethernet link/FPGA
- 2x6.25Gbps optical links/FPGA
- 4 GB DDR2 memory/FPGA

10 boards production

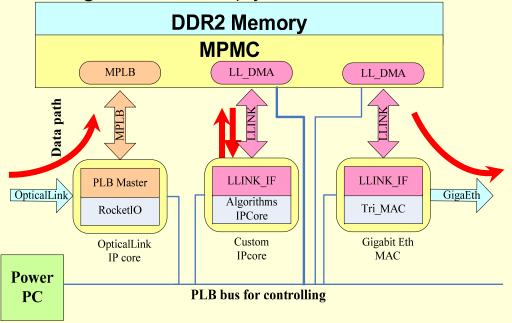
- For PANDA and PXD firmware development
- 3 boards assembled with virtex4 fx60-11 for SFP+
 - 6.25Gbps/ch
- 7 boards assembled with virtex4 fx60-10 for SFP
 - 3.125 Gbps/ch

Algorithms Development and Performance Test



- Data reduction algorithms
 - talk by D. Münchow
- A Prototype system on the Compute Node
 - talk by B. Spruck
- Data Flow test
 - System on programmable chip
 - Memory throughput

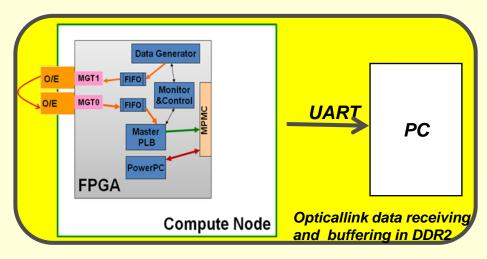
System on Programmable Chip

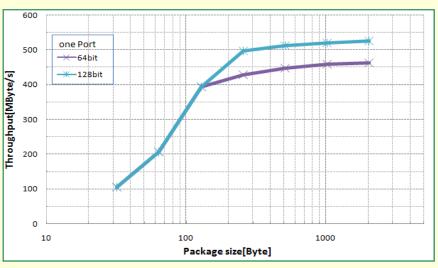

- Based on PowerPC hardcore inside Xilinx FPGA and other open source IP cores to build a general purpose system, Open source Linux is ported for system management and UDP/TCP stack processing
- Algorithms are designed as custom IP cores and a on-chip data switching module is build based on MPMC

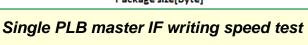
Data Flow

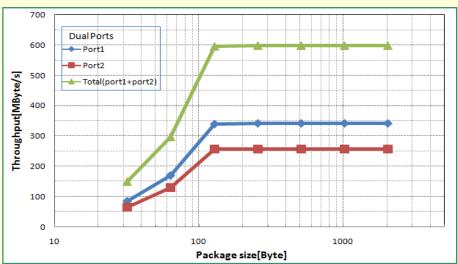
- Raw data received from optical link and buffered in DDR2 memory
 - By Master PLB
 - Low latency(write/4, read/23 PLB clocks), high bandwidth(theoretical maximum 800MB/s)
- Data sent to algorithm IP cores and result written back to DDR2 memory(by LocalLink DMA, flexible and high bandwidth)
- Results sent out via Gigabit Ethernet(by UDP/TCP, standard design)

Test Results of Memory Throughput




~550MB/s per optical link: ~3% occupancy


~110MB/s accepted event: ~20% reduction


~660MB/S write/read needed

The real throughput is limited by MPMC and PLB PIM. The single port throughput is lower than expected

Dual PLB master IF writing speed test

xTCA Compliant Design

- Motivation
- xFP module and test
- Development for SVD concentrator

Motivation

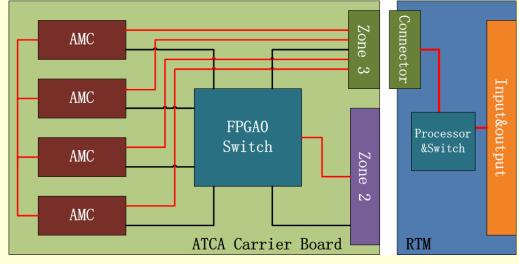
Compute Node

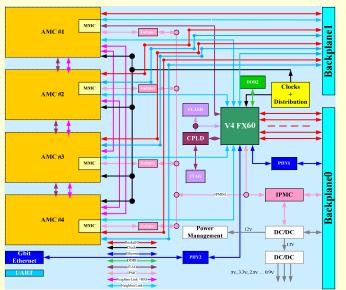
 A general high availability and high performance data acquisition and trigger system

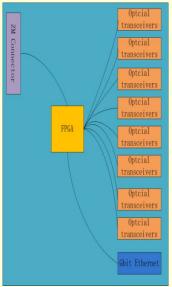
But, not satisfied in

- Memory capacity
- Timing and control capabilities
- xTCA for physics compliant (IHEP is a co-sponsor of this standard)

* xTCA is a good choice for next generation


- 1 ATCA Carrier Board with high bandwidth switch + AMC modules (xFP)
- Custom AMC modules for different applications
- Low cost, easy upgrade
- Flexibility for maintaining

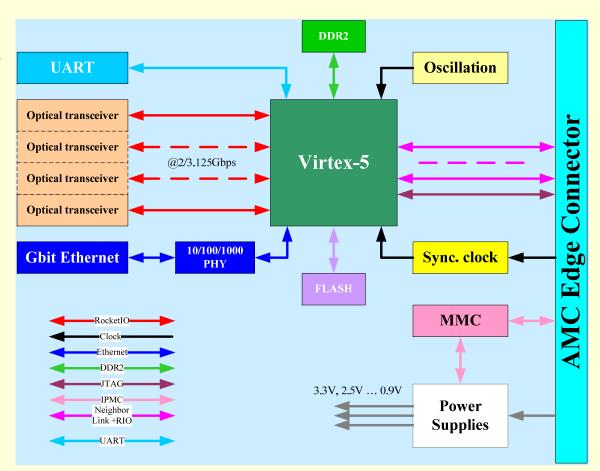



Development of Carrier Board

- The carrier board
 - based on xTCA
 - allowing backplane data transmission
 - 4 AMC connectors
 - FPGA0 for switch
 - IPMC routing
 - Clock/trigger/ distributions
 - Power conversions
 - RTM reservation(xTCA compliant)
- Status
 - Schematic is amended for xTCA specification 'draft'
 - PCB layout almost finished

AMC Connector Pins Definition (for xTCA compatability)

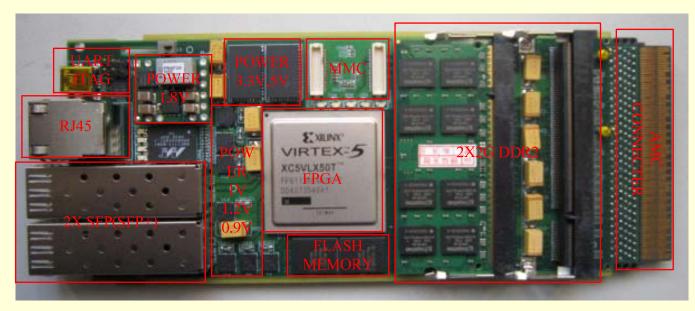
40 signal pairs allocated to the Fabric Interface: 20 inputs + 20 outputs

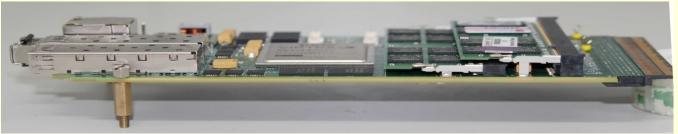

- Connection with neighbor AMC modules, total 2x(1x3 + 2x3) = 18
 - In: 1 MGT channels + 2 IO channels
 - Out: 1 MGT channels + 2 IO channelsh
- Connection with switch FPGA
 - In: 2IO channels
 - Out: 2IO channels
- Connection with RTM
 - In: 3 MGT channels + 2 IO Channels
 - Out: 3 MGT channels + 2 IO Channels
- FPGA download
 - In: 4 single-end
 - Out: 4 single-end
- Control
 - In: 4 single-end
 - Out: 4 single-end

The Structure of the xFP Card(AMC)

OEPFE >

- 2 x 3Gbps optical link
- 2 x 2GB DDR2 SDRAM
- 64MB Flash Memory
- 1x Gbit Ethernet
- 1 UART
- 1 IPMC/MMC

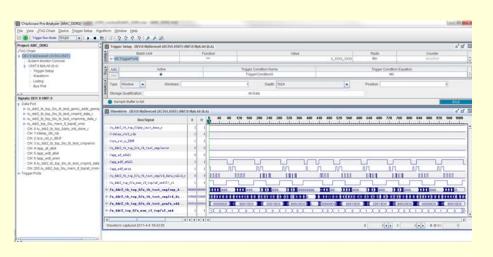


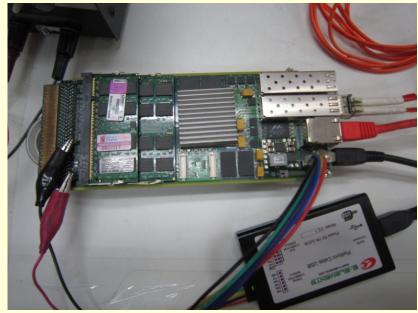


AMC/xFP is Ready

- FPGA:
 - XC5VLX50T

Test Results with AMC/xFP




Optical link @3.125Gbps

- Tested about 1 hour with pseudo random data
- Estimated BER < 8.6X10e-14

DDR2 SDRAM

2 x 2GB DDR2 @177MHz

Waveform - DEV:2	MyDevice2 (XC5VLX501	T) UNIT:3 Myll	Δ3 (II Δ) ····								
Bus/Signal	х о	513	514	515	516	517	518	519	520	521	522	523
or TxData 输出	出数据	605F	6261	6463	6665	6867	6A69	(6C6B)	6E6D	706F	7271	7473
~ errer 出错	个数									0	0	
◆ RrData 接收	Z数据	3635	3837	3A39	3C3B	3E3D	403F	X 4241 X	4443	4645	4847	4A49
- DataPort[16]	0 0											
-DataPort[17]	0 0											
-DataPort[18]	0 0											
- DataPort[19]	0 0											

Peripherals Test with Microblaze

######################################								
1) Running IntcSelfTest								
Running IntcSelfTestExample() for xps_intc_0 IntcSelfTestExample PASSED Intc Interrupt Setup PASSED								
2) UART Test								
Running UartLiteSelfTestExample() for mdm_0 UartLiteSelfTestExample PASSED								
UART works well								
3) Flash Test Reading Flash Manufacturer and Device ID Codes Manufacturer ID = 0x0089 Device ID = 0x8922								
Flash works well								
4) Ethernet_MAC Test								
Running EmacLitePolledExample() for Ethernet_MAC Warning: This example will take minutes to complete without I-cache enabled EmacLite Polled Example PASSED								
Ethernet_MAC works well Exiting main()								
连接的 0:14:15 自动检测 9600 8-N-1 SCROLL CAPS NUM 捕 打印								

PowerPC Version of xFP

- Required for the Memory/IO throughput
- XC5VFX70T with PPC
 - PCB compatible
 - Soldering, to be back in this week
- Test results will be ready for June PXD DAQ workshop

Development for SVD Concentrator

Discussed with Soeren, Carlos and Michael

- A possible approach: based-on the xFP module
 - 4 optical link inputs
 - 2 more transceivers needed
 - Considering tight space limitation, we have to remove
 - One DDR2 memory slot
 - Ethernet Jack and PHY chip
- Difficulties
- Positive on this collaboration
 - IHEP/U.Giessen/U.Bonn
 - More discussion will be made in June

Summary

- CN production in good shape
 - Hardware ready for firmware development
 - Good results for data throughput(even not satisfactory)
 - Algorithms development on CN going well
- * xFP works well and new board with XC5VFX70T will be ready in 2 weeks
- Development for SVD started

Thank you for your attention!

Backup Slides

