DEPFET pixel stability

Guillermo Eneas Timón Grau

Index

- Pedestal stability
- Status map variations
 - Noisy map
 - Hot map
- Trailing frames
- Conclusions
- Back up slides

Pedestal Stability

- Difference of pedestals calculated between the first 5000 and the last 5000.
- Variation in run 1040 →
 2.3 ± 0.6
- Variation in run $2072 \rightarrow$

 0.9 ± 0.4

• This is a real error, because the statistical error is $\mathcal{E}_{ped} \approx 0$

Status Map

- Status Map changes from one run to other, noisy map even in the same run depending where we take the measures
 - Hot pixels and Noisy pixels are not always the same pixels
- Fixed Hot pixel cut comparing with a binomial distribution
- Noisy pixel cut fixed at 1.5 ADC units

Noisy Map

- Studying the variation in one run we find that,
 - Bad pixels (always) ~ 3.9%
 - Very variable pixels ~ 0.5% (diference of noise > 1 ADC unit)
 - Variable pixels ~ 1.1% (diference of noise ≤ 1 ADC unit)
 - Good pixels ~ 94.5%
- Studying variation in different runs with same voltages (2072 and 2061),
 - Bad pixels (always) ~ 2.1%
 - Very variable pixels ~ 3.2%
 - Variable pixels ~ 1.9%
 - Good pixels ~ 92.8%

Noisy Map

 Noise measured with 5000 events in different places of run 2072 for 4 very variable pixels, seems that there's not an uniform behavior.

Hot Map

- Studying variation in diferents runs (same voltages),
 - Bad pixels (always) ~ 0.05%
 - Variable pixels ~ 1.4%
 - Good pixels ~ 98.5%

- ADC counts for a hot pixel, the values oscilate between 0 and 5 ADC counts, we measure the noise with the first 5000 events where there's low variation of counts.
- Only one hot pixel of diference calculing hot map with the first 50000 and the last 50000 events, it seems that some adc changes its behavior when initialize the device

- Trailing frames are runs in which we save four consecutive lectures of the matrix.
- This was implemented in the DAQ by Sergey Furletov and his team in the test beam of 2010.
- The measurements were performed at MPI by Christian Koffmane.
- The data available on Bonn server.
- This data allows us to measure the clear efficiency in a clean way.

- Measures taken with Cd-109 source.
- Clear voltage scan: all voltages are referred to source.

Date	Run	CCG(V)	ClearHi(V)	ClearLo(V)	GateLo(V)
15/2/2011	2072	-1.5	18	2.5	-3.65
28/4/2011	3007	-1.5	17	2.5	-3.65
28/4/2011	3008	-1.5	15	2.5	-3.65
28/4/2011	3009	-1.5	13	2.5	-3.65
28/4/2011	3011	-1.5	22.5	2.5	-3.65
28/4/2011	3012	-1.5	20.5	2.5	-3.65
28/4/2011	3013	-1.5	24.5	2.5	-3.65

• A faint "shadow" of the signal is visible after clear pulse.

• For low clear voltage, the signal remains large in multiple frames $V_{CI}^{eff} = 10.5 V$

• Raising the clear voltage, a complete clear is achieved $V_{CI}^{e\!f\!f} = 22V$

Trailing Frames: Clear Efficiency

- We measure the clear efficiency by comparing the signal on the seed pixel before and after applying the clear voltage.
- Measure clear efficiency vs. Clear voltage

Clear Efficiency

 We've measured a sligth dependence on clear efficiency vs. seed charge.

CSIC

Conclusions

- There are ~5-7% of bad pixels on PXD5+DCDB
 - See Benjamin's talk Bonn 2011
- This DCDB allows characterization of PXD6 sensors

 Source runs with trailing frames allow us to measure the clear efficiency vs. V^{eff}_{CL}

Back up slides

Clear Efficiency vs. V_{CL}^{eff}

- Blue: Calculated with all seeds.
- Green: Calculated with seeds higher than 20 ADC counts.

