

LMU München - Excellence Cluster Universe

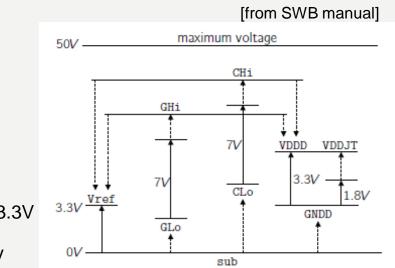
UPDATE on PS development

Stefan Rummel

Overview

- Organization
- Updates on requirements
- Engineering aspects
 - System overview
 - Multichannel prototype
 - PS form factor & space needs
 - HV channel
- Outlook

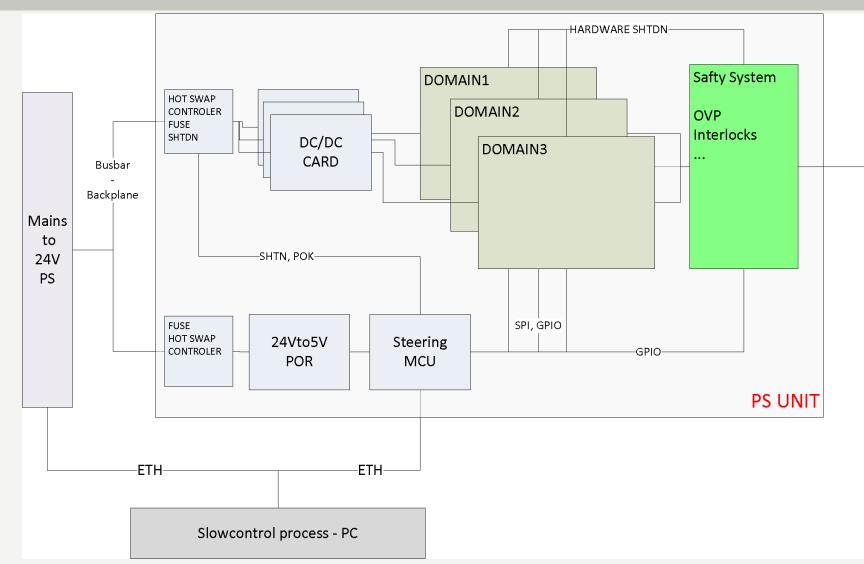
- Group from Krakow interested to join the PS development effort
 - Started with hardware tests
 - Will look into Overvoltage protection / Hardware safety system
 - Organizing a longer stay of a designer in Munich
- Manpower
 - More and more students are interested to work in our group
 - Helpful support for testing & Labview programming
- Firmware development is ongoing
 - \rightarrow See my next talk



Update on requirements

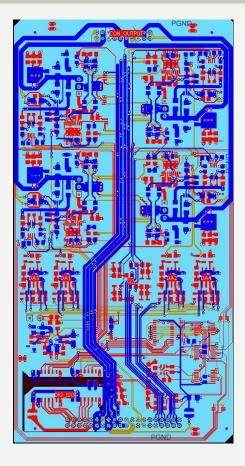
- New input from HLL \rightarrow have to be prepared for threshold voltage shift
 - Segmentation of MOS-structures
 - 3 Gate_On 3 CCG voltages
 - Range of voltages has increased (CCG, Gate)
 - Ability to put Gate_On below GND
 - Gate_OFF needs bipolar output (~ +5 to -5V)

 \rightarrow SW_SUBS can't be put on GND anymore


Old biasing: New biasing: VREF : SW_DVDD VREF : -10V + 3.3V SW_SUB : GND SW_SUB : -10V

- Need 6 additional voltages
- With this scheme steering voltages can be easily applied with respect to source

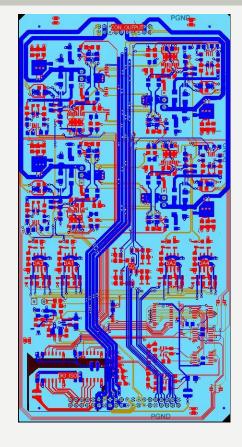
System overview



Design of multichannel prototype finished - "Analog Prototype"

prototype

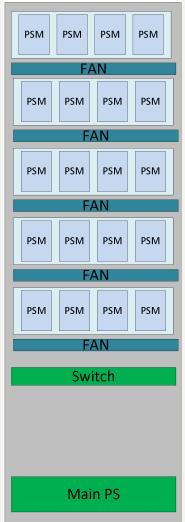
- Digital interface via DAC-PCI card and ADC
- Organized in 4 modules with 4 channels
- 4 layer PCB, 75*145mm2
- Flexible design:
 - With/without remote sensing
 - Positive- or Negative Output, sink or source
 - Flexible over current protection
 - Clear_OFF can be derived form Clear_On
 - Monitoring of currents and voltages
 - Status outputs


Compact channel (~9cm2)

Regulator (~2.5 cm) + pass element (.5cm2)

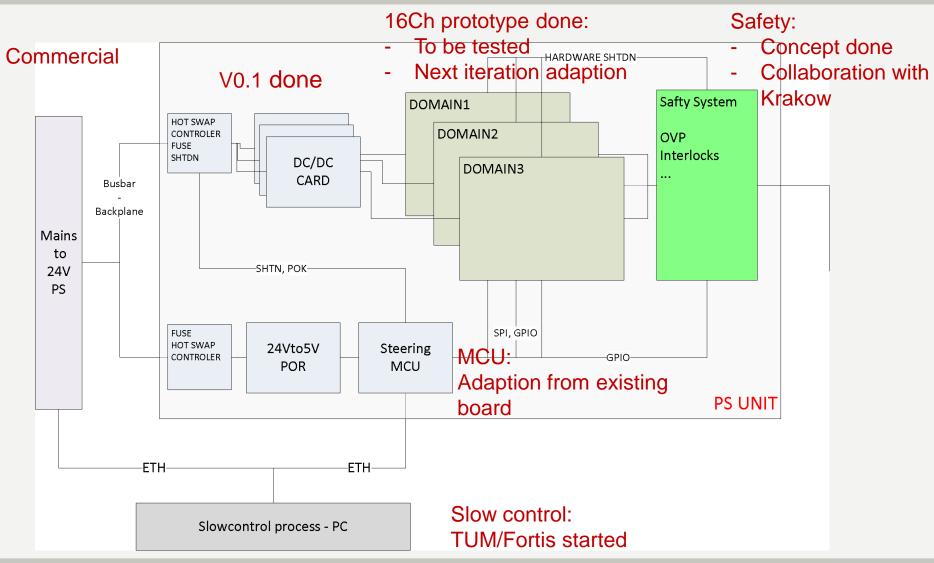
prototype

- Space for heat sink (~2cm2)
- Monitoring (~2.5cm2)
 - Current sense
 - Voltage sense
- Current source @ each output (.8cm2)
 - Allows the regulator to sink current
 - Interesting for DCD_AVDD, steering voltages
- Auxiliary circuitry
 - Digital isolators (now for steering of MUX, later for SPI)
 - Range adjustment for the DAC output
 - Common shutdown
 - ightarrow Layout is there and will serve as baseline for the next iteration
 - ightarrow Based on this we can make a first estimate on system-size
 - \rightarrow After commissioning first tests with DEPFET-system can be done



- Baseline for electro-mechanics
 - \rightarrow Use of standard 19" components
 - \rightarrow Good HF properties
- 24V Main power supply (e.g. TDK-Lambda GENSYS, 2U)
 - 3 kW (**E** DC/DC, **E** regulator, auxiliary)
 - 24V power distribution via bus bar + backplane
- PS modules standard cassettes 6HE-21TE \rightarrow 10 crates
- Cooling 19" fan unit 1U \rightarrow 1 per crate
- Connectivity ETH Switch ~2U
- Cooling interlock via backplane
- Connectivity (ETH, JTAG, Detector output) on front-side of PS-module
- \rightarrow First estimate: 2 two racks more precise estimate by Autumn

19" Rack – 220cm


HV - channel

- First prototype ready & tested
 - HV DC/DC converter
 - Shunt post regulator
- Specifications
 - 0-200V output settable
 - 1mA output current
 - Precise current and voltage monitoring
- Performance
 - Noise 2.2mVrms (0.1Hz-20MHz)
 - Still switching remnants visible 8mVpp
 - \rightarrow Second iteration with better filtering should solve this problem

c1 							LeCroy
C2 17	AND MADE OF A PARTY OF			here the a strength of the	al forder blede van de blede de state de blede state de blede state de state de state de state de state de stat		The second second
				<u> </u>			
Mea	sure	P1:sdev(C1)	P2:	P3:mean(C2)	P4:	P5:	P6:
valu	е	2.18 mV		-127.5 V			
mea	n	2.2064 mV		-127.491 V			
min		2.12 mV		-127.5 V			
max		2.35 mV		-127.5 V			
sdev		36.2 µV		17 mV			
num		525		525			
statu		1		1			
C1	BwLIDC1M	2 BWL DC1M			1	Timebase 500 µs Trig	ger CilDC
	5.00 mV/div	50.0 V/div				5.00 ms/div Auto	
	18.20 mV	0.0 V offset				1.00 MS 20 MS/s Edg	
L	-15.37 mV 1						-50.00 µs
ſ	-15.23 mV 1					X2= -75.00μs 1/ΔX= -3	
Δy	140 μV <mark>2</mark>	∆y 600 mV				ла толооро пане л	20.00 10 12

Next steps

- Next steps
 - Integrate DAC/ADC into Multichannel prototype
 - \rightarrow Adaption of existing design
 - MCU Steering card
 - ightarrow Adaption of evaluation board
 - Hardware safety OVP
 - \rightarrow Krakow
- Since our last Ringberg meeting in May 2009 we made significant progress
- Full scale electrical prototype by end of this year