

DHP 0.2 Status

Raimon Casanova (U Barcelona), Mirek Havranek, Tomasz Hemperek, Hans Krüger, Andre Kruth, Ichi Kishishita, Mikhail Lemarenko

Reminder – DHP Function

DHP Function Blocks

- 1. Receive and write raw data to memories (continuously)
- 2. Trigger \rightarrow read mem and process data
- 3. Pedestal subtraction
 - Static pedestals (update via JTAG)
- 4. Two pass common mode correction
 - First pass: all pixels \rightarrow find hits (biased)
 - Second pass: average w/o hits \rightarrow 0-supp.
- 5. Hit finder & de-randomizing FIFOs
 - 64 inputs (FIFO 1)
 - 1 output (FIFO 2)
- 6. Framer
 - Data formating
 - AURORA protocol
- 7. Serializer
 - 20:1 mux
 - CML driver with pre-emphasis

DHP 0.2 Main Features

- 64 channels (full size chip)
- C4 bump bonds
- Chip size ~ 3.2 mm x 4.0 mm
- Full implementation of data processing & r/o modes
 - Static pedestal compensation (JTAG update)
 - 2 pass common mode correction
 - Fast last frame raw data transfer
- Improved data format (up to 26% bandwidth reduction)
- Switcher sequencer
- On-chip bias DACs and temperature sensor (U Barcelona)
- Gbit link with programmable pre-emphasis

DHP 0.2 Floorplan

- Memory blocks (2048 rows equivalent)
 - Raw data
 - Offset data for 2 bit DAC
- Data processing core
- Output FIFO
- Serializer
 - PLL
 - 20:1 mux
 - CML driver (pre-emphasis)
- Analog blocks
 - 11 bias DACs (8 bit)
 - ADC (10 bit)
 - temp. measurement

DHP 0.2 Verification

• System Verilog OVM (open verification methods library)

Verification Status

CDC Check half output speed

vermation Status				universitä	thon
Task	Date	Owner	test name to launch	Notes	Status
number representation (check all possible values					
row data record and send		Tomasz	vsim_raw_data_test	?	OK?
pedestal update common mode algorythm(+ overflow)	4/12/2011 4/14/2011	l Mikhail Mikhail	vsim_pixel_masking_test	it was proven to be able to change the pedestal value through the JTAG some issue with desyncronization CM work properly	OK issue correcte OK
				looks ok. After loading the pedestals through the ACQUISITION_TO_MEM pedestals are correctly subtracted	
pedestal subtraction (+overflows)	4/11/2011	l Mikhail	vsim_pedestal_test		ОК
hit recognition	4/15/2011	l Mikhail	vsim_pedestal_test	no problem	ОК
nit recognition	4/1/2011	l Mikhail	vsim_pedestal_test		OK
osses test	4/1/2011	l Mikhail	vsim_occupancy_test	up to 2.4%	OK
offset compensation (shifting)					ongoing
sequencer					
PRBS pattern					
configuration (JTAG)	4/12/2011	l Mikhail	vsim_occupancy_test	ACQUISITION, ACQUISITION TO MEM, NOP	OK
ead-out JTAG losses counter	4/26/2011	Mikhail	vsim_error_counter_test		ОК
disable channel (255 in pedestals) -pixel masking test	4/28/2011	Mikhail	vsim_pixel_masking_test	in principle works but the masking is not trivial	ОК
disable memory					? what is that?
rigger latency test	4/26/2011	Mikhail	vsim_trigger_test		OK
Dutput Framing:					
- different frame size (1,2,3,4, max etc.)		Tomasz		max size set to 792, works correctly	OK
Data/Fifo overflow(for which opccupancy, should correspond to the simulated one)	4/12/2011	l Mikhail	vsim_pedestals_test vsim_occupancy_test	works properly	OK
Fest on random data	4/1/2011 4/12/2011	l Mikhail I Mikhail	vsim_pedestal_test	works up to 1.2% untriggered, then mixes up frames works up to 2.4% untriggered. Frames fixing up fixed	issue correcte OK
nclude random pedestals	4/11/2011	l Mikhail	vsim_pedestals_test	pedestals working	OK
nclude random pedestals	40644 4/12/2011	1 Mikhail I Mikhail	vsim_pedestals_test	works but some bugs observed works properly	issue correcte OK
				works properly. trigger[9:0] - refers to previous frame due	
rigger test	4/19/2011	Mikhail	vsim_trigger_test	to latency, of the latter is set to 4(standard setting)	ОК
andom data triggered FULL TEST!!!!	4/28/2011	Mikhail	vsim_full_triggered_test	work up to 4 % even better !!!!	OK
putput synchronization/post route					
CDC Check					

Verification Summary Snapshot

 JTAG configuration 	works
• Aurora	works
 Common mode bock 	works
• Hit finder	works
 Pedestal subtraction 	works
 Pedestal update through JTAG 	works
 Trigger latency 	works
 Raw data send-readout 	works?
 Pixel masking 	works
 Random data un-triggered losses test 	works
 Random data triggered losses test 	works

universität**bonn**

DHP 0.2 Data Inefficiency (un-triggered r/o) universitätbonn

FIFO depths (as in DHP 0.2)

- Fifo1: 16
- Fifo2: 512

7th Intl. Workshop on DEPFET Detectors and Applications, Ringberg Castle, Mai 8-12, 2011 H. Krüger

DHP 0.2 Data Inefficiency (30 kHz trigger)

universitätbonn

hist fifo2

Entries 999999

976.7

- Fifo1: 16
- Fifo2: 512

- generic 24 bit hit data format: <10b row | 6b col | 8b ADC>
 - 10 bit row address: 768 pixels
 - 6 bit column address: 64 pixels
 - 8 bit ADC range: 0..255
- want to add common mode value once per 256 pixels (every four rows)
 - send c.m. as data word (keep 24 bit alignment) → waste of bandwidth
 - alternative: store c.m. values for one frame and send the data in a special block
 - → makes the data path more complicated
- proposal: "row header" format
 - send row address only once and send corresponding data words with column address and ADC value only
 - 16 bit length for cm and data words
 - row header (including c.m.): < 10b row | 6b cm>
 - data word: <6b col | 8b ADC | 2b not used>
 - disadvantage: one cannot distinguish row headers form data words by their structure (maybe heuristics can do)

- reorder addresses bits to define flags for bits row headers and data words
 - row header: <row flag = 0 | 9b row | 6b cm>
 - data word: <data flag = 1 |7b col | 8b ADC>

- Frame Header SOF (32 bit): <data type | flags | frame ID>
 - data type (3 bit): [raw data or 0-supp. data]
 - flags, not used yet (13 bit)
 - frame ID (16 bit)
 - → will always be send at start of a new frame, independent of trigger
- Row Header SOR (16 bit): <flag = 0 | row address | common mode>
 - flag (1 bit): 0 \rightarrow row header
 - row address (9 bit)
 - common mode (6 bit)
 - → will only be send if hit data for the active row is available
- Data Word DW (16 bit): <flag = 1 | column address | ADC>
 - flag (1 bit): 1 \rightarrow pixel data
 - column address (7 bit)
 - ADC (8 bit)

Typical data stream:

<SOF n><SOR m><DW i><DW i+x> ... <SOR m+y><DW j><DW j+y> ... <SOF n+1> ...

- SOF will be send for every frame independent of trigger
- SOR will be send only if corresponding row contains hits
- Data will be sorted
 - Frame wise
 - Row wise
 - Column wise
- Data form different DHPs will not be aligned
 - Data per DHP (3% occupancy) \approx 4 kByte

DHP 0.2 Data Format (orig. Verilog code)

```
// data type flags
typedef enum bit [2:0] {
   RX PAIR DATA S = 3'b100, // not used
   RX ROW SINGLE = 3'b101, // 0-supp. data
   RX RAW DATA = 3'b000 // raw data
} t rx data type;
// row header and data word flag
typedef enum bit {
  RX ROW SINGLE HEADER=1'b0, // row header
  RX_ROW_SINGLE_DATA=1'b1} // data word
  t_rx_single_type_word;
// start of frame header SOF
typedef struct packed {
   t_rx_data_type frame_type;
   bit [12:0] flags; // not used
   bit [15:0] frame_id; // frame counter
} t rx frame header;
```

```
// data following a SOF
typedef union packed {
    struct packed {
        t rx single type word flag;
        union packed{
            struct packed {
                bit [8:0] row;
                bit [5:0] cm;
            } header;
            struct packed {
                bit [6:0] column;
                bit [7:0] val;
            } data;
        } value;
    } row_single;
    struct packed { // for raw data
          bit [1:0][7:0] data;
    } raw;
} t rx data;
```

Bias Generation DACs & ADC

- Bias DACs, 8 bit
 - LVDS RX/TX (3x)

universität**bonn**

- PLL (3x)
- CML driver (3x)
- Temp. indep. current reference
- Test structures
 - OPA
 - Comparator
- ADC, 10bit ۲
 - SAR •
 - Rail to rail input range
 - CML driver (pre-emphasis)
- Temperature measurement
 - Internal or external diode •

R.Casanova, L.Freixas

7th Intl. Workshop on DEPFET Detectors and Applications, Ringberg Castle, Mai 8-12, 2011

Temperature Measurement

- Principle: Measure forward voltage U_D for two diode currents I_1 and I_2
- For $I_1 = N \cdot I_2$ the voltage difference is $dU_D = \eta \cdot kT/q \cdot \ln(N)$ and thus

$$T = \frac{q \cdot (U_1 - U_2)}{\eta \cdot k \cdot \ln\left(\frac{I_1}{I_2}\right)}$$

universität**bonn**

Single measurement accuracy: ~2°C (limited by LSB size of the ADC)

 \rightarrow Improve by averaging

Data Serializer & Output Driver

• PLL

- Input: 80 MHz
- Out1: 320 MHz (DCD clock)
- Out2: 800 MHz (Serializer)
- Serializer (20:1)

• CML driver

Programmable pre-emphasis

- boost amplitude,
- boost pulse width

A. Kruth, M.Havranek

7th Intl. Workshop on DEPFET Detectors and Applications, Ringberg Castle, Mai 8-12, 2011 H. Krüger

LVDS Driver

- 1.8V supply
- Programmable output currents:
 - 0.6, 1.2, 1.8, 2.4 and 3 mA
- Tri-state output
- Active V_{CM} feedback

M. Karagounis, I Kishishita

- 4 output signals (LVDS)
 - sw_clock
 - sw_gate
 - sw_clear
 - sw_new_frame
- Programmable phase on all outputs
 - 3.125 ns step size
 - 32 steps
- **sw_clock**: 50% duty cycle, programmable rising edge
- **sw_gate** and **sw_clear**: programmable rising and falling edge
- **sw_new_frame:** synch with sw_clock (to falling edge) one clock cycle high (programmable distance to external frame_sync signal 0-255)

PXD6 Matrices with DHP 0.2

• 4 small matrices

– 1 chip DCD/DHP

- 1 Switcher
- 128 x 16 pixels
- 4 large matrices
 3 chips DCD/DHP
 - 5 Switcher
 - 768 x 120 (180)
- Not all layouts usable
 - M2 only adapted for DHP 0.2 (M1 done last year already)
 - \rightarrow Some layout shorts

Conclusion

universitätbonn

- Most of (digital) verification is done
- Data efficiency expected to satisfy requirements (< 1% loss @ 3% occupancy)
- Analogs blocks implemented & verified
- Footprint defined and implemented already on PXD6 matrices (batch 2)
- Everything prepared for submission on Mai 28

BUT:

- MOSIS announced this IBM 90nm MPW run to be the last (not yet confirmed that it will even take place).
- We have to change technology for further designs
 - Vendor choice: TSMC, UMC, GF...
 - Stay with 90nm or go to 65nm (synergy with other projects)?
 - Test structures with analog blocks \rightarrow Delay in DHP development (~6-12 m)

• backup

- Electronic channels:
 - 8 bit Switcher channel address: 0..191 (6 x 32 ch. Switcher)
 - 8 bit DCD channel address: 0..255 (one DCD \rightarrow one DHP \rightarrow one Link)
- Physical (pixel) addresses:
 - 10 bit pixel row address: 0..767
 - 6 bit pixel column address: 0..63
 - this format is used for the hit data words inside the DHP

7th Intl. Workshop on DEPFET Detectors and Applications, Ringberg Castle, Mai 8-12, 2011 H. Krüger

• General Design Information

• Floorplan/Placement Information

Design Status	Routed	Total area of Standard cells	1327012.669 um^2
Design Name	dhp_top	Total area of Standard cells(Subtracting Physical Cells)	1207224.995 um^2
# Instances	210162	Total area of Macros	5455043.037 um^2
# Hard Macros	120	Total area of Blockages	0.000 um^2
# Std Cells	209631	Total area of Pad cells	2110790.000 um^2
# Pads	411	Total area of Core	9411868.186 um^2
# Net	169040	Total area of Chip	12476000.000 um^2
# Special Net	6	Effective Utilization	3.2459e-01
# IO Pins	155	Number of Cell Rows	1806
# Pins	631902	% Pure Gate Density #1 (Subtracting BLOCKAGES)	14.099%
# PG Pins	419584	% Pure Gate Density #3 (Subtracting MACROS)	33.537%
Average Pins Per Net(Signal)	3.738	% Core Density (Counting Std Cells and MACROs)	72.059%
Total Wire Length	13431638.51 um	% Core Density #2(Subtracting Physical Cells)	70.786%
-		% Chip Density (Counting Std Cells and MACROs and IOs)	71.280%

% Chip Density #2(Subtracting Physical Cells) 70.319%