Development of High Speed Sampling ASIC Analog Memory Cell for Imaging Atmospheric Cherenkov Telescope

IMPRS workshop 2011/5/2 in München Takeshi Toyama University of Tokyo Institute Cosmic Ray Research

Table of Contents

- Motivation & Background
- About Analog Memory Cell (AMC)
 - How AMC samples voltage
 - AMC design detail
- Test
 - Test setup
 - Test Element Group
 - Result
- Summary & Future plans

Very high energy gamma ray astronomy

 A hundred of TeV gamma ray sources have been detected by Imaging Atmospheric Cherenkov Telescopes for example, PWNe, GC /, AGN , star burst galaxies and UnIDs

- These lead to understanding radiation mechanisms
- In particular, low energy (<50GeV) observations enable us to study the early universe

IACT observation system

Analog Memory Cell(AMC)

 ①Samples wave form with fast speed 1GHz and high precision over 10bits
 ②Reads out sampled data with slowly <50MHz

 Slower ADC can digitize the readout data

Why did we select not FADC but AMC system?

- better precision(>10bits)
- lower power consumption (order of mW) (cf: power consumption of FADC is a few W)
- compact (locate AMC with PMT)

- Sampling with high analog bandwidth & minimizing the integration time
 - 1 reduce the influence of Night Sky Background

- Sampling with high analog bandwidth & minimizing the integration time
 - 1 reduce the influence of Night Sky Background
 - 2 improves shower image finer
 - 3 leads to lower threshold energy, better sensibility, better angular resolution and better energy resolution

Target specification

AMC processed by 0.25µm technology

- charge resolution (10 bits)
- Sampling speed (1 GHz)
- Analog bandwidth (300 MHz)
 - enough to record original shapes of Cherenkov light signals

We can measure quantity of Cherenkov light correctly

• AMC has mainly

 AMC has mainly delay line (CMOS inverter)

 AMC has mainly delay line (CMOS inverter) sampling SWs (MOSFET)

 AMC has mainly delay line (CMOS inverter) sampling SWs (MOSFET) capacitors

 AMC has mainly delay line (CMOS inverter) sampling SWs (MOSFET) capacitors reading SWs (MOSFET)

 AMC has mainly delay line (CMOS inverter) sampling SWs (MOSFET) capacitors reading SWs (MOSFET) digital block

Sampling mode
 Reading mode

 AMC has mainly delay line (CMOS inverter) sampling SWs (MOSFET) capacitors reading SWs (MOSFET) digital block

Design ~analog bandwidth~

Test Element Group(TEG)

- We Fabricated 6 types Test Element Group as test pieces
- TEGs have different capacitor and architecture

capacitance	Architecture		
	Typical		
75fF	Symmetry		
	Simple		
	Typical		
400fF	Symmetry		
	Simple		
	capacitance 75fF 400fF		

CLK		1
SDIN	READ CONTROL	SETVREF
	1	001
Analog IN PRST	8= TEG1_1 channel 1	B OM1
Analog IN		OP2
PRST	A Let	₽ ÖM2
Analog IN	TEG1 2 observed 1	0P3
PRST		0 0 0 1 0
Analog IN	TEG1 2 channel 2	OP4
PKSI		
Analog IN PRST	8 TEG2 channel 1	
Analog IN		
PRST	TEG2 channel 2	3 OM6
Analog IN		OP7
PRST		0 17
Analog IN	TEG3 channel 2	OP8
PRST		9 008
CLK2		1
SD1N2	READ CONTROL	SETVREF2
DIN2		000
Analog IN	8 TEG4_1 channel 1	S 0P9
PKSI		
Analog IN PRST	TEG4_1 channel 2	ŠŏMiŏ
Analog IN		OP11
PRST		0 //11
Analog IN	TEG4 2 channel 2	OP12
PRST		
Analog IN	8 = TEG5 channel 1	OP13
Anglag III		
PRST	TEG5 channel 2	S OM14
Analog IN		0P15
PRST		OM15
Analog IN	TEG6 channel 2	OP16
PRST		Q 0 M 16

Linearity

residual in liner fit for75fF TEG residual in liner fit[mV]

residual in liner fit 400fF TEG residual in liner fit[mV]

Noise(RMS of measured voltages)

Analog bandwidth

- TEG3 is the best among TEG1~3 ,TEG6 is the best among TEG4~6
 Simple TEGs show the best analog bandwidth
- The better Analog bandwidth is shown in the operation with the smaller N
 N is the number of ON switches

Simulation of analog bandwidth

Simulation result

Summary

- AMC contributes to lower threshold energy
- Good results except for analog bandwidth
- Analog bandwidth of 100MHz should be improved
 - extra capacitance and resistance limit analog bandwidth
 - The smaller N gives a better analog bandwidth
- Simple Designs like TEG3 and 6 make analog bandwidth higher

Future plans

- I would like to contribute to design study of CTA and the upgrade of MAGIC, especially to the readout electronics with my experience
- I am also motivated to challenge new hardware developments: advanced photo detector SiPM etc
- This development contribute to achieve better sensitivity in low energy especially to study extra galactic sources and fundamental physics

Thank you for your attention

Back up

Test setup

Results

	TEG1	TEG2	TEG3	TEG4	TEG5	TEG6
Cell capacitance (fF)	75	75	75	400	400	400
Offset canceling SW	CMOS	CMOS	NMOS	CMOS	CMOS	NMOS
SW formation	Common	1 by 1	1 by 1	Common	1 by 1	1 by 1
Architecture NOTE:	typical	symmetry	simple	typical	symmetry	simple
Switch speed(GHz)	~1	~1	~1	~1	~1	~1
Dynamic range(V)	2.2	2.2	2.2	1.6	1.6	1.6
Linearity(maximum residual) (mV)	15	15	15	10	10	10
Gain	0.38	0.38	0.38	0.74	0.74	0.74
Average of noise(mV)	0.76	0.82	0.84	0.42	0.41	0.42
resolution(bit)	10.1	10.0	10.0	11.4	11.4	11.4
Analog bandwidth N=10 (MHz)	<100	<100	~100	<80	<80	80

red : clear target spec blue: NOT clear target spec

Test Element Group(TEG)

CLK			1
SDIN	ŏ—	READ CONTROL	SETVREF
DIN	Ϋ́		
Analog IN	8-	TEG1 1 channel 1	2 OP1
PKSI Anolog III	I		I OP2
PRST	8=	TEG1_1 channel 2	3 012
Analog IN			OP3
PRST	ŏ-		ON3
Analog IN	٩Ļ	TEG1 2 channel 2	OP4
PRST	የ		2 014
Analog IN	8-	TEG2 channel 1	OP5
PKSI Amolog III	Ϋ́		I ONS
PRST	8	TEG2 channel 2	000 0006
Analog IN			L OP7
PRST	ŏ-	IEG3 channel I	δN7
Analog IN	<u>ال</u>	TEC2 abannal 2	0P8
PRST	ዮ		2 ON8
CLK2	L		1
SD1N2	8	READ CONTROL	SETVREE2
DIN2	۲T-		
Analog IN	8-	TEG4 1 channel 1	2 0 99
PRST	Ĭ		I ORIO
Analog IN	8=	TEG4_1 channel 2	3 0110
Analog IN			OP11
PRST	ŏ۳	IEG4_2 channel 1	Ş ŏMii
Analog IN	ե⊢	TEGA 2 channel 2	OP12
PRST	የ		P 0 M 12
Analog IN	<u>k</u> -	TEG5 channel 1	2 OP13
PRST	Ϋ́		
Analog IN PRST	8	TEG5 channel 2	5 OF 14
Analog IN			0P15
PRST	ŏ-		0115
Analog IN	<u>ا</u>	TEG6 channel 2	OP16
PRST	የ		2 OM16
			

- Fabricated 6 type test element group
 - different capacitor & architecture
- Add to differential system
 - have a clone TEG
 - take a difference between two TEGs
 One has a signal with pedestal
 - -The other has a just pedestal for canceling out common noise & offset in chip

	capacitance	Sample SW	Offset canceling SW	Offset canceling SW formation	Cell	Architecture
TEG1	75fF		CMOS	Common	128 64	Typical
TEG2				1 by 1		Symmetry
TEG3		CMOS	NMOS			Simple
TEG4	400fF	CINOS	CMOS	Common		Typocal
TEG5			CINICS	1 by 1		Symmetry
TEG6			NMOS			Simple

Offset canceling SW formation

Design ~Offset canceling~

Design ~Thermal noise~ Noise voltage Vrms [mV]

$$V_{rms} = \sqrt{\frac{kT}{C}}$$

k:boltzmann constant C:capacitor T:temparture

target voltage Vrms:0.25mV we safely setting (dynamic range1V &12bits) 1/2¹²× 1V=0.25mV

select 75fF

Cell capacitance [fF]

Switching speed

Analysis method analog bandwidth 1.Input various frequency wave 2.fitting wave 3.estimate amplitude

Discussion residual in liner fit

Vertical axis: residual liner fit cell by cell Horizontal axis: cell ID

Voltage[mV] residual liner fit TEG1-1

Design ~analog bandwidth~

Difference of gain

AMC Power consumption

Power consumption (mW)

AMC+AMC test board +FPGA(reading board)	10400
FPGA(reading board)	7490
AMC+AMC test board	2910

*AMC test board including input buffers(*8) & ADC power consumption

Target specification

AMC processed by 0.25µm technology

- charge resolution (10 bits)
- Sampling speed (1 GHz)
- Analog bandwidth (300 MHz)
 - enough to record original shapes of Cherenkov light signals

We can estimate light of shower correctly

