

Recent QCD results from the Tevatron

H H D

Markus Wobisch Louisiana Tech University

Ringberg Workshop "New Trends in HERA Physics 2011" 25 – 28 September 2011, Ringberg Castle, Lake Tegernsee

Hard QCD Processes

Physics Objects

Physics Objects

Physics Objects

Outline

- Photon Production (+ Jet)
- Vector Boson + Jet(s)
- Event Shapes
- Jet Production
- Determination of α_s

35

5

425 455 485 515

365 395

275 305 335

Weekly Integrated Luminosity

Week # (Week 1 starts 03/05/01)

- Peak Luminosity: 4.2x10³² cm⁻² sec⁻¹
- Run II total delivered: 12 fb⁻¹

Fermilab Tevatron – Records

Integrated Luminosity in One Store: 12150.17+ 12048.1 [1/nb], April 17, 2010, Store #7748. For CDF and D0, respectively
Integrated Luminosity in a Week: 73.070 [1/pb], April 13 - April 20 2009. Average integrated Luminosity of CDF and D0.
Integrated Luminosity in a Month to CDF: 273.423 [1/pb], March 2010. D0 also set a record this month (avg 272.720 1/pb)
Maximum number of PBars at Low Beta: 3326E9, February 10, 2008, Store #5899. From the Recycler
Maximum number of Protons at Low Beta: 18236. E9, July 14, 2002, Store #1526.
Store Duration: 53.75 Hours, 29-31 July 2006, Store #4862

Integrated Luminosity in a Floating Week: 81.98 [1/pb],

4 50E + 32 4 60E June 14, 2011.

Run II Detectors

Direct Photon Production

direct photons emerge unaltered from the hard subprocess
→ direct probe of the hard scattering dynamics
→ sensitivity to PDFs (gluon!) ...but only if theory works

11

Incl. Isolated Photons

- CDF and D0 measurements: $20 < p_T < 400 \text{GeV} \rightarrow \text{agreement}$
- theory vs. data: disagreement in low p_T shape
- experimental and theory uncertainties > PDF uncertainty
 → no PDF sensitivity yet
- first: need to understand discrepancies in shape

Isolated Photon + Jet

Isolated Photon + HF Jet

Isolated Photon + HF Jet

Phys. Rev. Lett. 102, 192002 (2009)

Di-photon production

- Di-Photon final state: one of main discovery channels for Higgs at the LHC
- Possible signatures of new physics, such as large Extra Dimensions

- \rightarrow agreement between CDF and D0 data
- \rightarrow theory describes data at high mass (> 50 GeV)
- \rightarrow at low mass: theory too high

Di-photon p_T

→ between 20-50 GeV: theory does not describe data

 \rightarrow RESBOS (resummed gluon contributions) describes pT < 20 GeV

Di-photon ∆¢

 \rightarrow no theory describes data over whole $\Delta \phi$ range

→ RESBOS (resummed gluon contributions) describes $\Delta \phi \rightarrow \pi$

Vector Boson + Jets

Fixed-order: NLO

LO + Parton Shower

Matched Tree-Level + PS

Backgrounds to New Physics

Vector Boson + Jet

- relevant to other high-multiplicity processes
- background to Higgs
- test "matched" predictions \rightarrow critical to Tevatron / LHC physics

Provide detailed measurements of $p_{\mathsf{T}}\,$ and angular distributions of vector boson and jet

- \rightarrow test perturbative QCD calculations
- \rightarrow testing and tuning of phenomenological models

$Z + jets \rightarrow p_T - jet$

Measurement of 1st, 2nd and 3rd jet p_T in Z events: →normalize to inclusive Z production (cancel some uncertainties) compare to pQCD @ LO / NLO Phys. Lett. B 669, 278 (2008)

Leading jet in Z + jet + X Second jet in Z + 2jet + X Third jet in Z + 3jet + X E DO Burn II L 1 04 fbt + Data at particle level

NLO describes data within scale range

22

LO not too bad

Z + jets (angular distrib.)

Overall: decent agreement

new preliminary CDF result (8.2fb⁻¹) $Z(\rightarrow II) + n$ jets n=1-4, $I=e,\mu$

brandnew preliminary CDF result (8.2fb⁻¹) $Z(\rightarrow II) + n$ jets n=1-4, l=e, μ

Here: p_{Tiet} distributions for jet #1, 2, 3

 \rightarrow good agreement for jets #1, #2

Z + jets

brandnew preliminary CDF result (8.2fb⁻¹) $Z(\rightarrow II) + n$ jets n=1-4, I=e,µ

 \rightarrow good agreement for jet #1, reasonable for #2, poor for #3 (large k-factor)

Z+ b jet

Discriminant distribution

$$\frac{\sigma(Z + o \,\text{jet})}{\sigma(Z + \text{jet})} = 0.0193 \pm 0.0022 (\text{stat}) \pm 0.0015 (\text{syst}) \qquad \text{NLO MCFM} \\ 0.0192 \pm 0.0022$$

prediction decreases by 3.6% when the effects from detector response, resolution as well as hadronization and $_{27}$ underlying event are taken into account.

W+jets

 p_{Tiet} distributions for jet #1, 2, 3, 4 \rightarrow test NLO (n=1,2,3) LO (n=4)

NLO describes 1st jet well – 3rd jet less well

Event Shapes

Theory: A. Banfi, G. Salam and G. Zanderighi J. High Energy Phys. 1006, 038 (2010).

New CDF measurement of transverse thrust and thrust minor (show uncorrected data) → Large underlying event corrections

Event Shapes

Present (corrected) average values of <D> as a function of E_T^{leading jet}
 →Compared to PYTHIA (tune A)
 →and to analytical NLO+NLL calculation (parton-level) in CEASAR
 A. Banfi, G. P. Salam and G. Zanderighi, J. High Energy Phys. 0408, 062 (2004).

 \rightarrow See also recent CMS result: events shapes based on jets

Jet Production

In the absence of new physics:

theory @NLO is reliable (10%)

\rightarrow Precision phenomenology

- sensitivity to PDFs \rightarrow high-x gluon
- sensitive to

Unique sensitivity to **new physics**:

- new particles decaying to jets,
- quark compositeness,
- extra dimensions,
- ...(?)...

Inclusive Jets

Inclusive Jets

Dijet Angular Distribution

Dijet Angular Distribution

1/σ_{dijet} dσ/dχ_{dijet}

Measurement for dijet masses from 0.25 TeV to >1.1 TeV

 \rightarrow First time:

Rutherford experiment above 1 TeV

 \rightarrow Data described by Standard Model

Constrain models of Spatial Extra Dimensions and quark compositeness:

- Quark Compositeness $\Lambda > 2.9$ TeV
- ADD LED (GRW) Ms > 1.6 TeV
- TeV⁻¹ ED Mc > 1.6 TeV

 \rightarrow Most stringent pre-LHC limits

Dijet Mass Distribution

central dijet production |y| < 1

- test pQCD predictions
- test pQCD predictions sensitive to new particles decaying into dijets: excited quarks, Z', W', Randall-Sundrum gravitons, color-octet, techni-rho, axigluons, colorons

Dijet Mass Distribution

central dijet production |y|<1

- test pQCD predictions
- sensitive to new particles decaying into dijets: excited quarks, Z', W', Randall-Sundrum gravitons, coloroctet, techni-rho, axigluons, colorons

Dijet Mass Distribution

Dijet Mass Spectrum

- → First measurement of rapidity dependence of dijet mass spectrum in six |y|_{max} regions

 0 < |y|_{max} <2.4
 → extend QCD test to forward region
 → up to M_{2-iet} > 1.2 TeV
 - → good agreement with Standard Model predictions

no hints for:

- dijet mass bumps (resonances, decaying into dijets)
- excess at high masses
 (indications of new physics at higher energies)

Dijet Mass Spectrum

→ First measurement of rapidity dependence of dijet mass spectrum in six |y|_{max} regions
 0 < |y|_{max} <2.4
 → extend QCD test to forward region
 → up to M_{2-iet} > 1.2 TeV

3-jet Mass Spectrum

2-jet cross section: $O(\alpha_s^2) \times PDF^2$ (correlation of α and gluon density)

3-jet cross section: $O(\alpha_s^3) \times PDF^2$

analyze 2-jet and 3-jet cross sections:

 → decorrelate α_s and gluon density in PDF fits

First Run II measurement of 3-jet cross section vs.

- rapidity $|y_{1,2,3}|$ (left)
- p_{T3} requirement (right)
- \rightarrow up to M_{3-jet} > 1.2 TeV
- → extend QCD tests to O(α_s^3) processes

M_{3-jet} data/theory

similar to dijet mass result:

- **MSTW2008**: slightly higher than data at all M_{3-jet} (but consistent)
- **CT10** agrees at low M_{3-jet} different shape: too high at high M_{3-jet}
- CT10, MSTW2008 68% CL uncertainty bands: no overlap at high M_{3-jet}

M_{3-jet} data/thy (other PDFs)

compare all recent PDFs (MSTW2008, CT10, ABKM09, HERA1.0)

- NNPDF2.1 very similar to MSTW2008
- ABKM09 very similar to HERAPDF1.0 (5-20% lower than MSTW)
- CT10 has strong increase for $M_{3-jet} > 0.6$ TeV (x > 0.3)

M_{3-jet} detailed analysis

Agreement between theory and data depends on

- PDF
- Choice of $\alpha_s(M_Z)$ especially since σ_{3-jet} is of O(α_s^3)
- Choice of scales μ_R , μ_F

Comments

- Different PDF fits have different preferred $\alpha_s(M_Z)$ values
- Different PDF fits use a different scale for inclusive Tevatron jets: - CT10: μ_R , $\mu_F = p_T/2$
 - other groups : μ_R , $\mu_F = p_T$ (better behaved at large |y| which gives strong constraints for high-x PDFs)

For a fair comparison: study theory(PDF)/data agreement

• versus $\alpha_s(M_Z)$

• for different scales
$$\mu_R$$
, $\mu_F = \mu_0$, $\mu_0/2$, $2\mu_0$
with $\mu_0 = (p_{T1} + p_{T2} + p_{T3}) / 3$

Accepted by Phys. Lett. B (2011)

independent of μ_{R} , μ_{F} and $\alpha_{s}(M_{Z})$ choices

Best agreement for MSTW2008/NNPDF for μ_R , $\mu_F = \mu_0$ and $\alpha_s(M_Z)$ = world average

Strong Coupling Constant

inclusive jet cross section is sensitive to α_s

previous CDF result from Run I: PRL88, 042001 (2002)

α_s and the RGE

- $\alpha_{s}(\mu_{R})$: depends on renormalization scale \rightarrow predicted by "RGE"
- Values $\alpha_{s}(\mu_{R})$ are not predicted
- $\alpha_{s}(\mu) \leftarrow \text{RGE} \rightarrow \alpha_{s}(M_{7})$
- Agreement: compare $\alpha_{s}(M_{7})$

QCD test (2 aspects):

- Determine $\alpha_{s}(M_{7})$ \rightarrow check process independence
- Test RGE \rightarrow running $\alpha_{s}(\mu_{R})$

 $\alpha_{s}(M_{7})$ extraction at large p_{T} requires high (experimental & theory) precision

50

Knowledge of α_s

Renormalization Group Equation has been tested for momenta up to 209 GeV

(LEP e^+e^- data)

 \rightarrow But not yet for larger scales

Basic principle

Perturbative cross section formula:

$$\sigma_{\text{pert}}(\alpha_s) = \left(\sum_n \alpha_s^n c_n\right) \otimes f_1(\alpha_s) \otimes f_2(\alpha_s)$$

• pQCD matrix elements: explicit α_s dependence

• f_1, f_2 (PDFs): implicit α_s dependence

PDFs and input data

Currently: Main constraints on high-x gluon density come from Tevatron jet data

Goal: Minimize correlations between data and PDF uncertainties

→ Restrict α_s analysis to kinematic regions where impact of Tevatron data for PDFs is small.

 \rightarrow Tevatron jet data don't affect gluon for x < 0.2 – 0.3

Incl. Jets: x-sensitivity

Jet cross section has access to x-values of: (in LO kinematics)

$$x_a = x_T \frac{e^{y_1} + e^{y_2}}{2}, \quad x_b = x_T \frac{e^{-y_1} + e^{-y_2}}{2} \text{ with } x_T = \frac{2p_T}{\sqrt{s}}$$

What is the x-value for a given incl. jet data point $@(p_T, |y|)$?

- → Not completely constrained unknown kinematics since we integrate over other jet(s)
- \rightarrow Construct "test-variable" (treat as if other jet was at y=0):

$$x = x_T \cdot (e^{|y|} + 1)/2$$

- \rightarrow Apply cut on this test-variable to restrict accessible x-range
- → Find: requirement x-test < 0.15 removes most of the contributions with x > 0.2 - 0.3
- \rightarrow 22 (of 110) data points remaining at 50 < p_T < 145 GeV

x_{min} / x_{max} distributions

Every analysis bin \rightarrow one plot Each plot: x-min/x-max distributions

¥,

Cut on test-variable x-test < 0.15 \rightarrow 22 (of 110) data points remain

These have small contributions from x > 0.2 - 0.3

← Only data points above green line are used

Data Sample

22(out of 110) inclusive jet cross section data points at $50 < p_T < 145$ GeV

 \rightarrow Input in α_s analysis

Strong Coupling Const.

57

 \rightarrow Use best theory prediction: NLO + 2-loop threshold corrections (Kidonakis/Owens) with MSTW2008NNLO PDFs

$$\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$$

- \rightarrow Most precise result from a hadron collider
- \rightarrow Consistent with HERA results and world average

Total Experimental Experimental uncorrelated correlated correction uncertainty uncertainty variation +4.1+3.4+1.1+2.5+1.00.1161 ± 0.1 -3.3-4.8-1.6-1.2-2.9

Theoretical Precision

Main result: use best theory predictions NLO + 2-loop threshold corrections (Kidonakis/Owens) with MSTW2008NNLO PDFs $\alpha_s(M_Z) = 0.1161^{+0.0041}_{-0.0048}$ Use only NLO with MSTW2008NLO PDFs $0.1202^{+0.0072}_{-0.0059}$

- Larger value of "NLO-only" result:
 - \rightarrow due to missing O(α_s^4) contributions
- Larger uncertainty of "NLO-only" result:
 - \rightarrow due to increased scale dependence (main effect)
 - \rightarrow and increased PDF uncertainty (minor effect)

All uncertainties are multiplied by a factor of 10^3

	Total uncertainty	Experimental uncorrelated	Experimental correlated	Nonperturb. correction	PDF uncertainty	$\mu_{r,f}$ variation
0.1161	$+4.1 \\ -4.8$	±0.1	$+3.4 \\ -3.3$	$^{+1.0}_{-1.6}$	+1.1 -1.2	$^{+2.5}_{-2.9}$

Running of α_s (?)

But: α_s extraction from inclusive jets uses PDFs which were derived assuming the RGE

ightarrow We cannot use the inclusive jets to test the RGE in yet untested region

Going further ...

... towards testing in the RGE in novel energy regimes

→ Cannot rely on PDF information (PDF parametrizations already assume RGE in DGLAP evolution)

Cancelling PDFs: Ratios

Goal: test pQCD (and α_s) **independent** of PDFs

- Probability to find a third jet in an inclusive dijet event
- Sensitive to α_s (3-jets: α_s^3 / 2-jets: α_s^2)
- (almost) independent of PDFs

 $\mathbf{R}_{3/2} = \sigma_{3\text{-jet}} / \sigma_{2\text{-jet}}$

Measure as a function of two momentum scales:

- p_{Tmax} : common scale for both σ_{2-jet} and σ_{3-jet}
- p_{Tmin} : scale at which 3rd jet is resolved (σ_{3-jet} only)

Sensitive to α_s at the scale $p_{Tmax} \rightarrow probe running of <math>\alpha_s(p_{Tmax})$

Details:

- inclusive *n*-jet samples (*n*=3,2) with *n* (or more) jets above p_{Tmin}
- |y| < 2.4 for all *n* leading p_T jets
- $\Delta R_{jet,jet} > 1.4$ (insensitive to overlapping jet cones)
- study p_{Tmax} dependence for different p_{Tmin} of 50, 70, 90 GeV
- → Measurement of $R_{3/2}(p_{Tmax}; p_{Tmin})$

63

Using $R_{3/2}$ to test NLO matrix elements

For a given $\alpha_s(M_Z) = 0.118$: \rightarrow NLO results for MSTW2008NLO, NNPDF v2.1, ABKM09NLO agree \rightarrow CT10 slightly higher at high p_T

Overview

fastNLO Collab., arXiv: 1109.1310

Theory-data comparison for jet cross section data in processes with initial-state hadrons

- RHIC
 HERA 1, 2 (high Q2 only)
- Tevatron Run I, II (central rapidities only)
- First LHC results (central rapidities only)

Highest pT reach by LHC data

Overview: x_T dependence

Summary

→ precision measurements of fundamental observables @2TeV → consistent results from CDF and D0

- photon production (inclusive, plus jet, plus HF jet, diphoton)
 → need to find missing pieces in theory
- Z/W + jet production (p_T spectra, angular distributions)
 → many distributions for pQCD tests and for model tuning
 → NLO describes some of the basic variables (not all)
- event shape variables
 → interesting new (in pp) testing ground from soft to hard QCD
- jet production (inclusive p_T, dijet angle and mass, 3-jet mass, ratio R₃₂)
 - \rightarrow precision measurements pQCD very successful
 - \rightarrow constraints on $\alpha_{s}(M_{Z})$ and high-x gluon

In the RGE one performs matching at the flavor thresholds

- → one threshold at m_{top} (= 170 180 GeV) where n_f makes a step from 5 to 6
- → For inclusive jets / dijets at the Tevatron/LHC: Do we really want to do that?
- What n_f should one use for computing single jet inclusive / or inclusive dijet cross sections for $\mu = p_T > m_{top}$

So far, fastNLO (used in all global PDF fits to compute Tevatron jets) uses $n_f = 5$ everywhere

Reasoning: We do not measure jets from top decays at $p_T > m_{top}$

 \rightarrow Make people aware – in that case RGE should also use n_f = 5

MC tuning

"soft" ISR does not describe Inclusive dijet $\Delta \phi$ distribution \rightarrow needs more ISR \rightarrow tune DW

Different when explicitly requiring a third jet \rightarrow R32

→ Prefers "BW" (original) soft ISR