QCD Results from the LHC

Ringberg Castle, September 28, 2011

Richard Nisius (MPP München)

Richard.Nisius@mpp.mpg.de

Overview

Topics covered

- Inclusive jet production
- Exclusive jet production
- Rapidity gaps, BFKL signatures
- W/Z + n-jet production
- The tt cross-section
- The top-quark mass from the $\ensuremath{t\bar{t}}$ cross-section
- The charge asymmetry in $t\bar{t}$ production

Un-covered topics

- Underlying event structure, hadron production, jet shapes, track jets, jet fragmentation functions, W/Z+b-jet-production, direct photons, ...
- Total pp cross-section
- QCD properties of Pb-Pb collisions

Sorry, the title should really be – Selected QCD Results from ATLAS and CMS –

Theoretical predictions and Monte Carlo tunings

The classes of predictions

- Leading Order (LO) 2 → 2 Matrix Elements (ME) plus Parton Shower (PS).
 and underlying event (UE): Pythia, Herwig+Jimmy.
- LO 2 → n ME: Sherpa, MadGraph, Alpgen plus PS and UE via Pythia or Herwig(PS)+Jimmy(UE).
- NLO calculations for up to n=3 partons: MCFM and NLOJet++.
- NLO calculations plus parton showers: MC@NLO (plus Herwig+Jimmy) and Phoweg (plus Pythia or Herwig+Jimmy).
- All order prediction of wide-angle emissions: HEJ.

The Monte Carlo tunings to data

- ATLAS: Pythia (AMBT, MC09'), Herwig (AUET1),
- CMS: Pythia (D6T, Z2, 2C) and Herwig (2.3).

This is a variety of predictions, the data have been compared to all of them.

A six-jet event at the LHC - ATLAS

- A rich environment with many jets, underlying event and pile-up, $\langle \mu
angle pprox 0.1 - 3$ in 2010.

A high performance jet algorithm is needed to get the physics out.

The anti- k_{t} algorithm - the present work horse

The jet shapes

parton level. + 104 soft

The average jet area as function of pt

LHC $aa \rightarrow aa$. stable particle. di-jets, R=1

Some details on the algorithm

$$-d_{ij} = \min(1/k_{t,i}^2, 1/k_{t,j}^2) \frac{\Delta_{ij}^2}{R^2}, \quad d_{iB} = 1/k_{t,i}^2. \\ -\Delta_{ii}^2 = (y_i - y_i)^2 + (\Phi_i - \Phi_i)^2, \quad R = 0.4...1.0$$

- For $\Delta_{ij}>R$ the jet with Max \emph{k}_{t} stays alone.
- The resulting jet shapes are round and rigid.
- The area is flat with $p_t \rightarrow$ stable pile-up contribution.
- BR = Change in p_t due to re-assignment of non-pileup particles when adding 25 pile-up events.

The anti- k_t algorithm has very good properties.

The back-reaction (BR)

Inclusive jet cross-section - CMS

Double differential cross-section

Comparison to NLO in bins of rapidity

- CMS Particle Flow $(\ell, \gamma, h^{\pm}, h^{0})$ jets, Δ_{JES} =(3-4)% $\Delta \mathcal{L}_{int}$ = 4% and NP: Non.-Pert. Unc. = Pythia+Herwig.
- At high p_t the largest theoretical unc. is due to PDFs, i.e. the data start to constrain them.
- Experimental uncertainty mainly from Jet Energy Scale (JES), which will decrease.
- The NLOJet++ description of the data is fair, but generally slightly high, esp. at large |y|.

Agreement is found within 20%, however deteriorating for larger rapidities.

Inclusive di-jet cross-section - CMS

The di-jet cross-section is well described, but need smaller exp. unc. to constrain the PDFs.

The 3-jet to 2-jet ratio - CMS

The uncorrected H_T distribution for 2-jet and 3-jet inclusive

 $p_{\mathrm{t}} > 50 \; \mathrm{GeV}$ |y| < 2.5 $H_{\mathrm{T}} = \sum p_{\mathrm{t,i}}$

Monte Carlo normalized to $\sigma(\geq 2\text{-jet})$

- $\Delta p_{\rm t} \approx$ 12%(5%) for 50 GeV(1 TeV) and $\Delta \textit{H}_{T} \approx$ 6%(3.5%) for 50 GeV(1 TeV).
- The Pythia (MadGraph and Herwig) model describes the shapes to $\mathcal{O}(20\%)$.
- The Pythia corrections to the particle level amount to about 4%(2%) for $H_{\mathsf{T}} < (>)$ 0.5 TeV.

The corrected distributions will be compared to LO 2 \rightarrow n-parton predictions.

The 3-jet to 2-jet ratio - CMS

CMS

 R_{32}

The corrected 3-jet to 2-jet ratio

L. =36 pb

Comparison to various predictions

- Alpgen: MLM matching p_t = 20 GeV, R=0.7.
 MadGraph: parton matching p_t = 30 GeV
- MadGraph: parton matching $p_{\rm t}=$ 30 GeV.
- Experimental unc. (4-10)% dominated by the knowledge of the $p_{\rm t}$ dependence in the MC.
- Good description at large H_T . Predictions overestimate data at low- H_T , but for MadGraph.

The low- H_T region needs further attention.

Inclusive multi-jet production - ATLAS

- The corrections are based on Alpgen+(Herwig+Jimmy).
- $-\Delta\sigma(\textit{JES}) pprox +5\%(+2.5\%)$ for 60 GeV(1 TeV), and 'larger' -3% everywhere.
- Compare to LO for R=0.4 (less UE dependent) and to NLO for R=0.6 (less scale dep.).

The inclusive jet multiplicty is well described by the predictions.

Di-jet production with jet veto - ATLAS

The strategy

- Study jet activity in gap between pair of jets with:
 - A) highest $p_t \Rightarrow p_{t,1}, p_{t,2}$ similar
 - B) largest $|\Delta y| \Rightarrow M_{12} > \overline{p}_{t}$.
- Study two observables within gap:
- I) Fraction of events f with no jet above $p_{\rm t}=Q_0$.
 - II) Average jet multiplicity $\langle N(p_t > Q_0 \gg \Lambda) \rangle$. This probes: wide angle soft gluon radiation for
- $Q_0 \ll \overline{p}_t$, BFKL dynamics for large $|\Delta y|_{\text{max}}$, and color singlet exchange if both are fulfilled.
- The distributions are corrected to particle level.
- $-\Delta(JES)$ (2-5)% in barrel and 13 % for $|\eta| > 3.2$.
- $\Rightarrow \Delta \approx 3\%(7\%), 3\%(6\%), 5\%, \text{ for } f, \Delta y \text{ and } \langle N \rangle.$

The findings

- Herwig and Pythia are ok, except for large Δy .
- Alpgen has too many jets, except for low scales.

Complicated interplay of various scales.

Di-jet production with jet veto - ATLAS

Ratios to predictions

The predictions

- HEJ = all order wide-angle.
- From Powheg = NLO di-jet, the Pythia-Herwig difference is smaller than the HEJ fact. scale, PDF, α_s uncertainties
 ⇒ keep HEJ at parton level.

, mook at parton for

The findings

- The NLO prediction has too much jet activity.
- Phoweg + Pythia is closer to data than with Herwig.
- HEJ has too few jets, especially for large Δy and at large $\overline{p}_{\rm t}/Q_0$ for all Δy .

The largest deviations are seen at large \overline{p}_t/Q_0 and/or large Δy .

W/Z + 1-jet production - ATLAS

The remaining jet-level corrections

Breakdown of systematics

- Determining the ratio $\frac{W(\to \ell \nu) + 1 \text{-jet}}{Z(\to \ell^+ \ell^-) + 1 \text{-iet}} (p_{\rm t} > p_{\rm t}^0)$ constitutes a precision test of QCD.
- Use $p_{\rm t} > 30$ GeV, $|\eta| < 2.8$, veto events with additional jets with $p_{\rm t} > 30$ GeV.
- All EW background estimated from MC, QCD background is taken from data side-bands.
- EW: 3.4(1) e, 5(1) μ QCD: 19(0.3) e, 3.2(0.3) μ . — Bad in % for W(Z):
- Data corrected to particle level. Most uncertainties cancel in the ratio.

First analysis of a potentially very precise challenge for QCD.

W/Z + 1-jet production - ATLAS

The muon channel result

The combined result

Alpgen: LO 2 \rightarrow n MCFM: NLO 2 \rightarrow 2

corrected with Pythia

MCFM uncertainties PDF + scales

Muon: 8.49 \pm 0.23 \pm 0.33 Combined: 8.29 \pm 0.18 \pm 0.28, corrected to a common Electron: 8.73 \pm 0.30 \pm 0.40 phase space, (e and μ have slightly different acceptances).

Good agreement at low p_t , at large p_t the data is statistically limited.

The tt cross-section - CMS

The sensitive distribution

Some analysis details

- Use one discriminative variable.
- Combine lepton channels.
- Exploit a number of statistically

independent sub-sets of data with different signal to background compositions.

- The analysis is already systematics limited for the 2010 data with $\mathcal{L}_{int}=36 pb^{-1}.$
- Use profile likelihood, i.e. allow systematics to cancel each other, within bounds.

The combined fit Muon Electron Data tt Single Top W46-jets W4c-jets W4LF-jets Z-jets Q 200 78/0.5 GeV b-iets Secondary vertex mass(GeV) Secondary vertex mass(GeV)

The analyses explores one observable for different jet and \emph{b} -jet multiplicities.

The tt cross-section - ATLAS

A discriminating distribution

The combined fit

Some analysis details

Likelihood Discriminant

- Very similar to CMS, however, uses four distributions and no b-tagging (was largest syst. for ATLAS).
- QCD and W+jets (normalization) from data, other from MC.
- Example: $H_{\mathsf{Tp},3} = \frac{p_{\mathsf{t}}(3) + p_{\mathsf{t}}(4)}{p_{\mathsf{t}}(1...4) + p_{\mathsf{t}}(\ell) + p_{\mathsf{t}}(\nu)}, \, \eta^{\ell}, \, p_{\mathsf{t},\mathsf{max}}, \, \mathsf{aplanarity}.$
- Likelihood fit gives fractions and nuissance parameters.
- The fit improves on the data description.

The analyses explores various obervables for different jet multiplicities.

The tt cross-section - Results

Latest LHC combined figure

Latest prel. LHC measurements ($\sigma_{t\bar{t}}$ in pb)

Exp(Lumi)	Value	stat.+sys.	lumi
CMS (0.8-1.1/fb)	164.4	12.2	7.4
ATLAS (0.7/fb)	179.0	9.8	6.6

The experimental precision challenges the predictions.

Theoretical predictions

NNLO (approx.) $t\bar{t}$ cross sections at the LHC (\sqrt{s} = 7 TeV)

Measure $m_{ m t}$ from the $\sigma_{ m tar t}$ - general considerations

The strategy

- $-\sigma_{t\bar{t}}(\emph{m}_{t})$ is known at NLO, NLO+(N)NLL or approx. NNLO.
- Measure $\sigma_{t\bar{t}}(m_t)$, profit from $\frac{\Delta m_t}{m_t} \approx \frac{1}{5} \frac{\Delta \sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}$.
- So: $\sigma_{\rm t\bar{t}}(m_{\rm t}) = (8.2 \pm 0.8) \ {\rm pb} \ (10\%)$ $\Rightarrow m_{\rm t} = (163 \pm 3) \ {\rm GeV} \ (2\%).$

The caveat

- This is only true if the measurement of $\sigma_{t\bar{t}}$ does not depend on \emph{m}_{t} itself.
- However, the acceptance is not flat, but a function of the m_t (MC) parameter used. in the LO (NLO) Monte Carlo.
- Use m_t (pole): Treat quark as free and long lived, or m_t ($\overline{\mbox{MS}}$): Treat mass as a coupling.
- Relate m_t ($\overline{\text{MS}}$) and m_t (pole), i.e. m_t (pole) = 172 GeV $\Rightarrow m_t$ ($\overline{\text{MS}}$) = 162 GeV.
- The difference of $m_{\rm t}$ (MC), $m_{\rm t}$ (pole) is expected to be $\mathcal{O}(1~{
 m GeV})$ so: Where to put the data?

The dependence on the mass definition is significant.

Measure $m_{\rm t}$ from the $\sigma_{ m tar t}$ - results

The ATLAS measuremement

Interprete the result

$$m_{\rm t}({\rm direct}) = (173.18 \pm \frac{0.56 \pm 0.76)}{< 1 \text{ GeV} (0.6\%)}$$

$$-\Delta \sigma_{t\bar{t}}(exp) = 13\% \Rightarrow \Delta m_t(exp) = 3\%,$$

But:
$$\frac{\sigma_{t\bar{t}}(160) - \sigma_{t\bar{t}}(172.5)}{\sigma_{t\bar{t}}(172.5)} = 18\%$$

 \Rightarrow Need to find an $m_{\rm t}$ independent !? selection.

Comparison to D0 measurement

 $-\sigma_{\rm t\bar{t}}({\rm exp}) = 8.13^{+1.02}_{-0.90}$ pb yields $\Delta m_{\rm t} = {\cal O}(5)$ GeV.

- Use $\sigma_{\mathrm{t}\bar{\mathrm{t}}}(m_{\mathrm{t}}^{\mathrm{pole}})$ and $\sigma_{\mathrm{t}\bar{\mathrm{t}}}(\overline{\mathrm{MS}})$ while assuming $m_{\mathrm{t}}^{\mathrm{MC}}=m_{\mathrm{t}}^{\mathrm{pole}}$ or $m_{\mathrm{t}}^{\mathrm{MC}}=m_{\mathrm{t}}^{\mathrm{MS}}\Rightarrow\Delta~m_{\mathrm{t}}=\mathcal{O}(3)$ GeV.

The measurement is hampered by its interpretation.

The charge (forward-backward) asymmetry

The two sources of the asymmetry

The formulas

- $\begin{array}{ll} \ \mbox{Rapidity:} \ y = \frac{1}{2} \ \mbox{In} \ \frac{E+p_z}{E-p_z}. \\ \ \mbox{Single Asymmetry:} \ A^{p\bar{p}} = \frac{N_{\rm t}(y\geq 0)-N_{\rm t}(y\geq 0)}{N_{\rm t}(y\geq 0)+N_{\rm t}(y\geq 0)}. \\ \ \mbox{Difference:} \ \Delta y = y_{\rm t} y_{\rm \bar{t}} = q_\ell(y_\ell-y_{\rm had}). \\ \ \mbox{Pair Asymmetry:} \ A^{{\rm t}\bar{t}} = \frac{N(\Delta y\geq 0)-N(\Delta y\leq 0)}{N(\Delta y\geq 0)+N(\Delta y\leq 0)}. \\ \ \mbox{A}^{{\rm t}\bar{t}}/A^{p\bar{p}}(QCD,\%) = 8/5(\approx 1) \ \mbox{TeV (LHC)}. \\ \ \mbox{CP-Invariance:} \ \mbox{CP}|\ N_{\rm t}(y)\ \rangle = |\ N_{\rm \bar{t}}(-y)\ \rangle. \\ \mbox{Charge} \leftrightarrow \mbox{forward-backward, if defined.} \end{array}$
- Only caused by quark initiated processes, i.e. gluon initiated processes dilute Aff.
 - \Rightarrow $A^{f\bar{f}}$ (Tevatron) > $A^{f\bar{f}}$ (LHC) because $q\bar{q}/gg \approx 90/10$ (15/85) for Tevatron (LHC).
- ${\it A}^{far{f}}>0$, however selecting 1) or 2) could help to look for consistency.
- The asymmetry is NLO in $\sigma_{t\bar{t}}$, i.e. it is only known at LO! $A^{f\bar{t}}$ depends on $p_t(t\bar{t}), \Delta y, M_{t\bar{t}}, \dots$
- $\textit{A}^{t\bar{t}}>\textit{A}^{p\bar{p}}$ because all pairs contribute, i.e. $\textit{A}^{t\bar{t}}$ is theoretically preferred.
- The channel $t\bar{t} \to \text{lepton+jets}$ is used. $A^{p\bar{p}}$ only needs $y_{\text{had}} = y(qqb)$. In contrast, A^{tt} also needs $y_{\ell} = y(b\ell\nu)$ which has a worse angular resolution, i.e. experimentally $A^{p\bar{p}}$ is easier.

The asymmetry values measured at Tevatron created some excitement.

The charge asymmetry - Tevatron results

Exp/Theo	all	$A^{\mathrm{t}\bar{\mathrm{t}}}(\Delta y < 1)$	$A^{t\bar{t}}(\Delta y > 1)$	
CDF	15.8 ± 7.4	$2.6 \pm 10.4 \pm 5.6$	61.1 ± 21.0 ± 14.7	
MCFM	5.8 ± 0.9	3.9 ± 0.6	12.3 ± 1.8	rise
D0	19.6 ± 6.5	6.1 ± 4.1	21.3 ± 9.7	not cian
MC@NLO	5.0 ± 0.1	1.4 ± 0.6	6.3 ± 1.6	not sign.
	_	_		

	$A^{ m tt}(M_{ m tar t} < 450~{ m GeV})$	$A^{ m tt}(M_{ m tar t}>450~{ m GeV})$	
CDF	$-11.6 \pm 14.6 \pm 4.7$	$47.5 \pm 10.1 \pm 4.9$	rise
MCFM	4.0 ± 0.6	8.8 ± 1.3	1130
D0	7.8 ± 4.8	11.5 ± 6.0	not sign.
MC@NLO	1.3 ± 0.6	4.3 ± 1.3	

The asymmetries are all larger than expected - lets see what LHC finds.

Beware!

- The NLO corrections to A^{ff̄} are not fully known.
 - \Rightarrow need to wait.

The charge asymmetry - LHC analyses

The transfer matrix

Tevatron vs. LHC

- The LHC is FB-symmetric, and valence quarks have larger x,
- ⇒ forward regions counts most.

The raw distributions

Some analyses details

- The efficiencies are symmetric.
- The transfer matrix calls for unfolding of the data distributions.
- Good description of the data by combination of MC models and data driven estimates.

Controlling all effects that may be asymmetric is essential.

The charge asymmetry - LHC results

Unfolded results on Att

The raw M_{tt} dependence

The preliminary results

The predictions

0.6% (MC@NLO). (1.1 \pm 0.1)% (Rodriguez).

- In addition, CMS does not find any significant dependence on $M_{
m t\bar t}$.

At LHC the asymmetry is found to be independent of $\textit{M}_{t\bar{t}}$, and the SM decribes the data.

Conclusions and Outlook

- The LHC is a QCD machine and it performs beautifully $\mathcal{L}=3.3\,10^{33}$ /cm²/s, $\mathcal{L}_{int}=3.6$ fb. However, the ever increasing number of pile-up events is a continuous challenge.

- Statistics is plentiful, and the key to success is reducing the systematics, either by an even better detector understanding, or by optimizing observables.
- Jet physics is a very rich field with many predictions up to NLO. Here, reducing the jet energy scale uncertainty is the key to precision.
- The W/Z+jets processes offer some precision NLO QCD tests.
- Also top-quark physics offers many QCD observables and challenges to theory. Some interesting features of the Tevatron data could not be confirmed.
- As always, the close collaboration and interplay between theorists and experimentalists pays off in designing the analyses.
- Finally, my apologies to those interested in UE, soft QCD, track jets, b-jets, \dots

There is lot more to come in the next years, stay tuned.

Backup - Transparencies

Inclusive multi-jet production - ATLAS

- $-H_{\mathsf{T}}^{(2)}=p_{\mathsf{t},1}+p_{\mathsf{t},2}$ has smallest scale uncertainty and mainly probes PDF and $lpha_s$.
- Non.-Pert. effects taken from Pythia (LO ME \leftrightarrow LO ME+PS+UE) are about 5%.
- NLOJet++ prediction shows an overall good description, but for low $H_{\mathsf{T}}^{(2)}$.

Overall good description by NLO, but for low $H_T^{(2)}$. LO predictions are further away.

Di-jet production with jet veto - ATLAS

The production of a W-Boson + 2-jets - Tevatron

The CDF result

200

- Bkg Sub Data (7.3 fb⁻¹

Gaussian

The D0 result → Data - Bkgd DØ, 4.3 fb-1 Events / (10 GeV/c^2) Bkgd ± 1 s.d. 250 Diboson Gaussian (4 pb) 200 $M_{ii} = 145 \text{ GeV/c}^2$ 150 100 $P(\chi^2) = 0.526$ 50

Richard Nisius

50 100 150 200 250

The experimental facts

- Can not describe shoulder in Mii distribution.
- Use additional Gauss to describe the difference.
 - Subtract all background. Not confirmed by D0, set limit $\sigma(145 \text{ GeV}) < 1.9 \text{pb}$ with 95%C.L.

Possible explanation

- Mis-reconstructed top-quarks peak at $\sqrt{m_{\rm t}^2 - m_{\rm W}^2}$!
- Shift in single top + tt background wrt. WV can solve this.
- CDF sees to many single top events, but D0 does not!

An inconclusive situation.

M, [GeV/c2]

100

Dijet Mass [GeV/c2]

The production of a W-Boson + 2-jets - ATLAS

In search for a bump

- Try to mimic the CDF analysis, but: $\frac{WW}{W+n>2-iets}$ decreases by factor 5, i.e. $\frac{3.7}{22} \rightarrow \frac{15.3}{440}$.
- Jet selection: $\emph{p}_{t}>30$ GeV, $|\eta|<$ 2.8, $|\Delta\eta|<$ 2.5, $\emph{M}_{jj}>40$ GeV, $\Delta\Phi_{jet,E_{\tau}^{miss}}>$ 0.4.
- Estimate background for QCD and the W+jets (normalization) from data.

There is no sign of an excess, the CDF result can not be confirmed.

The measured $m_{\rm t}$ from the $\sigma_{\rm t\bar{t}}$ - CMS

The $m_{\mathrm{t}}^{\mathrm{pole}}$ mass

The $m_{\rm t}^{\overline{\rm MS}}$ mass

Brand new - Write-up not yet available.