# MSTW PDFs and impact of PDFs on cross sections at Tevatron and LHC

## Graeme Watt

#### CERN PH-TH

## Ringberg Workshop: New Trends in HERA Physics 2011 Ringberg Castle, Tegernsee, Germany, 26th September 2011

| Introduction                |           |                    |                               |                     |   |
|-----------------------------|-----------|--------------------|-------------------------------|---------------------|---|
| 00000000000000000           | 0000      | 0000000000000      | 00000000000000000             | 0000000             | 0 |
| Status of MSTW PDF analysis | Benchmark | W and Z production | Higgs, top and jet production | $\alpha_S$ from DIS |   |

Introduction

Talk mostly based on two recent papers (with some updates):

• G. Watt,

"Parton distribution function dependence of benchmark Standard Model total cross sections at the 7 TeV LHC" [JHEP **09** (2011) 069, arXiv:1106.5788]

 R. S. Thorne and G. Watt, "PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism" [JHEP 08 (2011) 100, arXiv:1106.5789]

"Impact of PDFs on cross sections at Tevatron and LHC" PDFs  $\Rightarrow$  cross sections at the Tevatron and LHC. Cross sections at the Tevatron and LHC  $\Rightarrow$  PDFs.

# MSTW 2008 PDFs [http://projects.hepforge.org/mstwpdf/]

Benchmark

W and Z production

Higgs, top and jet production



MSTW 2008 NLO PDFs (68% C.L.)

Status of MSTW PDF analysis

••••••

- A. D. Martin, W. J. Stirling, R. S. Thorne, G. Watt
  - "Parton distributions for the LHC" [Eur. Phys. J. C 63 (2009) 189, arXiv:0901.0002]
  - "Uncertainties on α<sub>S</sub> in global PDF analyses and implications for predicted hadronic cross sections" [Eur. Phys. J. C 64 (2009) 653, arXiv:0905.3531]
  - "Heavy-quark mass dependence in global PDF analyses and 3and 4-flavour parton distributions"
     [Eur. Phys. J. C 70 (2010) 51, arXiv:1007.2624]
  - "The effects of combined HERA and recent Tevatron W → ℓν charge asymmetry data on the MSTW PDFs" [DIS 2010 proceedings, arXiv:1006.2753]

## Data sets fitted in MSTW 2008 NLO analysis [arXiv:0901.0002]

|                                                              | 2 / 1/                       |                                     |                          |
|--------------------------------------------------------------|------------------------------|-------------------------------------|--------------------------|
| Data set                                                     | $\chi^2$ / N <sub>pts.</sub> | Data set                            | $\chi^2$ / $N_{ m pts.}$ |
| H1 MB 99 e <sup>+</sup> p NC                                 | 9 / 8                        | BCDMS $\mu p F_2$                   | 182 / 163                |
| H1 MB 97 e <sup>+</sup> p NC                                 | 42 / 64                      | BCDMS $\mu d F_2$                   | 190 / 151                |
| H1 low $Q^2$ 96–97 $e^+p$ NC                                 | 44 / 80                      | NMC $\mu p F_2$                     | 121 / 123                |
| H1 high <i>Q</i> <sup>2</sup> 98–99 <i>e<sup>-</sup>p</i> NC | 122 / 126                    | NMC $\mu d F_2$                     | 102 / 123                |
| H1 high <i>Q</i> <sup>2</sup> 99–00 <i>e</i> + <i>p</i> NC   | 131 / 147                    | NMC $\mu n/\mu p$                   | 130 / 148                |
| ZEUS SVX 95 e <sup>+</sup> p NC                              | 35 / 30                      | E665 $\mu p F_2$                    | 57 / 53                  |
| ZEUS 96–97 e <sup>+</sup> p NC                               | 86 / 144                     | E665 $\mu d F_2$                    | 53 / 53                  |
| ZEUS 98–99 e <sup>-</sup> p NC                               | 54 / 92                      | SLAC ep F2                          | 30 / 37                  |
| ZEUS 99–00 e <sup>+</sup> p NC                               | 63 / 90                      | SLAC ed F2                          | 30 / 38                  |
| H1 99–00 e <sup>+</sup> p CC                                 | 29 / 28                      | NMC/BCDMS/SLAC F                    | 38 / 31                  |
| ZEUS 99–00 e <sup>+</sup> p CC                               | 38 / 30                      | E866/NuSea pp DY                    | 228 / 184                |
| H1/ZEUS $e^{\pm}p$ $F_2^{\rm charm}$                         | 107 / 83                     | E866/NuSea pd/pp DY                 | 14 / 15                  |
| H1 99–00 <i>e</i> + <i>p</i> incl. jets                      | 19 / 24                      | NuTeV $\nu N F_2$                   | 49 / 53                  |
| ZEUS 96–97 e <sup>+</sup> p incl. jets                       | 30 / 30                      | CHORUS $\nu N F_2$                  | 26 / 42                  |
| ZEUS 98–00 $e^{\pm}p$ incl. jets                             | 17 / 30                      | NuTeV $\nu N \times F_3$            | 40 / 45                  |
| DØ II pp̄ incl. jets                                         | 114 / 110                    | CHORUS $\nu N \times F_3$           | 31 / 33                  |
| CDF II pp̄ incl. jets                                        | 56 / 76                      | CCFR $\nu N \rightarrow \mu \mu X$  | 66 / 86                  |
| CDF II $W \rightarrow l \nu$ asym.                           | 29 / 22                      | NuTeV $\nu N \rightarrow \mu \mu X$ | 39 / 40                  |
| DØ II $W  ightarrow l u$ asym.                               | 25 / 10                      | All data sots                       | 2543 / 2600              |
| DØ II Z rap.                                                 | 19 / 28                      | All uata sets                       | 2343 / 2099              |
| CDF II Z rap.                                                | 49 / 29                      | • Red = New wrt MR                  | ST 2006 fit.             |

G. Watt

# Input parameterisation in MSTW 2008 NLO fit

W and Z production

Higgs, top and jet production

At input scale  $Q_0^2 = 1$  GeV<sup>2</sup>:

Benchmark

Status of MSTW PDF analysis

$$\begin{aligned} xu_{v} &= A_{u} x^{\eta_{1}} (1-x)^{\eta_{2}} (1+\epsilon_{u} \sqrt{x} + \gamma_{u} x) \\ xd_{v} &= A_{d} x^{\eta_{3}} (1-x)^{\eta_{4}} (1+\epsilon_{d} \sqrt{x} + \gamma_{d} x) \\ xS &= A_{S} x^{\delta_{S}} (1-x)^{\eta_{S}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x(\bar{d} - \bar{u}) &= A_{\Delta} x^{\eta_{\Delta}} (1-x)^{\eta_{S}+2} (1+\gamma_{\Delta} x + \delta_{\Delta} x^{2}) \\ xg &= A_{g} x^{\delta_{g}} (1-x)^{\eta_{g}} (1+\epsilon_{g} \sqrt{x} + \gamma_{g} x) + A_{g'} x^{\delta_{g'}} (1-x)^{\eta_{g'}} \\ x(s+\bar{s}) &= A_{+} x^{\delta_{S}} (1-x)^{\eta_{+}} (1+\epsilon_{S} \sqrt{x} + \gamma_{S} x) \\ x(s-\bar{s}) &= A_{-} x^{0.2} (1-x)^{\eta_{-}} (1-x/x_{0}) \end{aligned}$$

- $A_u$ ,  $A_d$ ,  $A_g$  and  $x_0$  are determined from sum rules.
- 28 parameters allowed to go free to find best fit,
   20 parameters allowed to go free for error propagation.

## Compare to input parameterisation in HERAPDF fits

W and Z production

Benchmark

Input parameterisation ( $Q_0^2 = 1.9 \text{ GeV}^2$ ) in HERAPDF1.0/1.5

Higgs, top and jet production

$$xu_{v} = A_{u_{v}} x^{B_{q_{v}}} (1-x)^{C_{u_{v}}} (1+E_{u_{v}} x^{2})$$

$$xd_{v} = A_{d_{v}} x^{B_{q_{v}}} (1-x)^{C_{d_{v}}}$$

$$x\bar{u} = A_{\bar{q}} x^{B_{\bar{q}}} (1-x)^{C_{\bar{u}}}$$

$$x\bar{d} = A_{\bar{q}} x^{B_{\bar{q}}} (1-x)^{C_{\bar{d}}}$$

$$x\bar{s} = 0.45 x\bar{d}$$

$$xs = x\bar{s}$$

$$xg = A_{g} x^{B_{g}} (1-x)^{C_{g}}$$

- 10 parameters for central fit and "experimental" uncertainties, additional "model" and "parameterisation" uncertainties.
- 4 more params. for HERAPDF1.5 NNLO (2 for g, 1 each for  $u_v$ ,  $d_v$ ).

Status of MSTW PDF analysis

#### MSTW 2008 NLO PDF fit



• Outer (inner) error bars give tolerance for 90% (68%) C.L.

## Impact of Tevatron Run II jet data on high-x gluon



• Run II jet data prefer **softer** gluon at high x than Run I.

# NuTeV/CCFR dimuon cross sections and strangeness

W and Z production

Benchmark



Status of MSTW PDF analysis

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}y}(\nu_{\mu}N \to \mu^{+}\mu^{-}X) = B_{c} \mathcal{A} \frac{\mathrm{d}\sigma}{\mathrm{d}x\mathrm{d}y}(\nu_{\mu}N \to \mu^{-}c X)$$
$$\propto |V_{cs}|^{2}\xi s(\xi, Q^{2}) + |V_{cd}|^{2} \dots$$

Higgs, top and jet production

•  $\nu_{\mu}$  and  $\bar{\nu}_{\mu}$  cross sections constrain *s* and  $\bar{s}$ .



# W+charm as a probe of strangeness [CMS PAS EWK-11-013]

W and Z production



Higgs, top and jet production

• Dominant 
$$\bar{s} \mathbf{g} \to W^+ \bar{\mathbf{c}}$$
 and  $s \mathbf{g} \to W^- \mathbf{c}$ .

Status of MSTW PDF analysis

• 5% from 
$$\overline{d} \, {f g} o W^+ \, \overline{{f c}}$$
, 15% from  $d \, {f g} o W^- \, {f c}$ .

$$\begin{aligned} R_c^{\pm} &\equiv \frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)} = 0.92 \pm 0.19 (\text{stat.}) \pm 0.04 (\text{syst.}) \\ R_c &\equiv \frac{\sigma(W + c)}{\sigma(W + \text{jets})} = 0.143 \pm 0.015 (\text{stat.}) \pm 0.024 (\text{syst.}) \end{aligned}$$

$$x(s+\overline{s})(x,Q^2=2 \text{ GeV}^2)$$
:



| Ratio       | MCFM (MSTW08)                    | мсғм <b>(СТ10)</b>               | MCFM (NNPDF2.1) |
|-------------|----------------------------------|----------------------------------|-----------------|
| $R_c^{\pm}$ | $0.881^{+0.022}_{-0.032}$        | $0.915\substack{+0.006\\-0.006}$ | $0.902\pm0.008$ |
| $R_c$       | $0.118\substack{+0.002\\-0.002}$ | $0.125\substack{+0.013\\-0.007}$ | $0.103\pm0.005$ |

G. Watt





• Experimental error on best-fit  $\alpha_S(M_Z^2)$  using same method applied to determine the tolerance for each eigenvector.







- Additional theory uncertainty ( $\lesssim |NNLO NLO| = 0.003$ ).
- cf.  $\alpha_S(M_Z^2) = 0.1184 \pm 0.0007$  [S. Bethke, arXiv:0908.1135].

# Impact of $\alpha_S$ on SM Higgs uncertainty versus $M_H$

W and Z production

Higgs, top and jet production

Benchmark



• Enhanced "PDF+ $\alpha_{S}$ " uncertainty compared to "PDF only".

Status of MSTW PDF analysis

## Heavy-quark mass dependence [MSTW, arXiv:1007.2624]



Impact of (pole-mass)  $m_{c,b}$  variation on LHC cross sections

- Vary  $m_c = 1.40 \pm 0.15$  GeV  $\Rightarrow$  just over 1% change in  $\sigma_{W,Z}$ .
- Vary  $m_b = 4.75 \pm 0.25 \text{ GeV} \Rightarrow \text{negligible change (0.1\%)}.$

| LHC, $\sqrt{s} = 7$ TeV                  | $\sigma_W$           | $\sigma_Z$           | $\sigma_H$           |
|------------------------------------------|----------------------|----------------------|----------------------|
| PDF only uncertainty                     | +1.7%<br>-1.6%       | $^{+1.7\%}_{-1.5\%}$ | $^{+1.1\%}_{-1.6\%}$ |
| $PDF + \alpha_{\mathcal{S}}$ uncertainty | $^{+2.5\%}_{-1.9\%}$ | $^{+2.5\%}_{-1.9\%}$ | $^{+3.7\%}_{-2.9\%}$ |
| $PDF+\alpha_{S}+m_{c,b}$ uncertainty     | +2.7%<br>-2.2%       | $^{+2.9\%}_{-2.4\%}$ | +3.7%<br>-2.9%       |

• Only slight increase in uncertainty on  $\sigma_{W,Z}$ , no impact on  $\sigma_H$ .

G. Watt





Changes not large enough to warrant an immediate update.

G. Watt



Fixed flavour number scheme

Zero-mass variable flavour number scheme

- General-mass variable flavour number scheme (GM-VFNS) interpolates between two well-defined regions (H ≡ c, b):
   FFNS for Q<sup>2</sup> ≤ m<sup>2</sup><sub>H</sub>, ZM-VFNS for Q<sup>2</sup> ≫ m<sup>2</sup><sub>H</sub>.
- Ambiguous up to  $\mathcal{O}(m_H^2/Q^2)$  terms  $\Rightarrow$  theory uncertainty.



18/60



## Effect on g and u at NNLO



## Background and motivation for benchmark exercise

W and Z production

Benchmark

Status of MSTW PDF analysis

G. Watt

- Various fitting groups currently produce PDF sets: MSTW, CT, NNPDF, HERAPDF, AB(K)M, (G)JR.
- Quantifying and understanding differences *between* groups is as (or more) important as continued improvements *within* groups.

Higgs, top and jet production

- Recent work initiated by activities of LHC Higgs Cross Section Working Group and PDF4LHC Working Group.
- Use most recent public NLO PDFs from all fitting groups to calculate LHC benchmark processes:  $W^{\pm}$ ,  $Z^0$ ,  $t\bar{t}$ ,  $gg \rightarrow H$ . Aims:
  - Establish degree of compatibility and identify outliers.
  - Compare cross sections at same  $\alpha_S$  values.
  - To what extent are differences in predictions due to different  $\alpha_S$  values used by each group, rather than differences in PDFs?
- Results initially presented in talk by **G.W.** at PDF4LHC meeting at CERN on 26th March 2010 and formed basis for subsequent *PDF4LHC Interim Report* [arXiv:1101.0536].
- Subsequent update and extension to NNLO [G.W., arXiv:1106.5788]. 20/60

## Status of PDFs from different groups in March 2010

- Consider only *public* sets, where "public"  $\equiv$  available in LHAPDF.
- Then LHAPDF V5.8.2 (released 18th March 2010).
- Highlight major differences in data and theory between groups:

|                  | MSTW08                | CTEQ6.6               | NNPDF2.0              | HERAPDF1.0            | ABKM09                | GJR08/JR09            |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| HERA DIS         | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                     | ✓                     |
| Fixed-target DIS | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | ✓                     | <ul> <li>✓</li> </ul> |
| Fixed-target DY  | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                     | ×                     | ✓                     | <ul> <li>✓</li> </ul> |
| Tevatron $W, Z$  | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ✓                     | ×                     | ×                     | ×                     |
| Tevatron jets    | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | ×                     | <ul> <li>✓</li> </ul> |
| GM-VFNS          | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | <ul> <li>✓</li> </ul> | ×                     | ×                     |
| NNLO             | <ul> <li>✓</li> </ul> | ×                     | ×                     | ×                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |

- "Global"  $\equiv$  includes all five main categories of data.
- GJR08 almost global but restrictive "dynamical" parameterisation.
- Three groups with **NLO** global fits, but only one at **NNLO**. Approx. NNLO for jets, massive  $\mathcal{O}(\alpha_S^3)$  NC and  $\mathcal{O}(\alpha_S^2)$  CC DIS.
- CTEQ6.6 only uses Tevatron Run I data, not Run II.
- NNPDF2.0 inadequate through use of ZM-VFNS for DIS.

## Status of PDFs from different groups in September 2011

- Now LHAPDF V5.8.6 (released 2nd August 2011).
- Highlight major differences in data and theory between groups:

|                  | MSTW08                | CT10                  | NNPDF2.1              | HERAPDF1.5            | ABKM09               | GJR08/JR09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HERA DIS         | <ul> <li>✓</li> </ul> | <ul> <li></li> </ul>  | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ~                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fixed-target DIS | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | <ul> <li></li> </ul> | <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fixed-target DY  | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | ~                    | <ul> <li>Image: A set of the set of the</li></ul> |
| Tevatron $W, Z$  | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | ×                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Tevatron jets    | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                     | ×                    | <ul> <li>✓</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GM-VFNS          | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | ×                    | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NNLO             | <ul> <li>✓</li> </ul> | ×                     | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> | >                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

• CT10 uses both Tevatron Run I and Run II data.

- Only CT10, NNPDF2.1 and HERAPDF use combined HERA I.
- Only HERAPDF1.5 uses preliminary combined HERA II data.
- NNPDF2.0 (ZM-VFNS) → NNPDF2.1 (GM-VFNS), now allowing meaningful comparison to other NLO global fits.
- NNPDF2.1 and HERAPDF1.5 now provided at NNLO.





- $\alpha_S(M_Z^2)$  for MSTW08, ABKM09 and GJR08/JR09 fitted.
- $\alpha_S(M_Z^2)$  for other groups applied as an external constraint.
- Smaller symbols indicate alternative  $\alpha_S(M_Z^2)$  values provided.
- Fitted NLO  $\alpha_s(M_Z^2)$  always larger than NNLO  $\alpha_s(M_Z^2)$ : attempt by fit to mimic missing higher-order corrections.

Ratio of NLO quark-antiquark luminosity functions

W and Z production

Benchmark

Higgs, top and jet production

$$\frac{\partial \mathcal{L}_{\Sigma_q(q\bar{q})}}{\partial \hat{s}} = \frac{1}{s} \int_{\tau}^{1} \frac{\mathrm{d}x}{x} \sum_{q=d,u,s,c,b} \left[ q(x,\hat{s}) \bar{q}(\tau/x,\hat{s}) + (q \leftrightarrow \bar{q}) \right], \quad \tau \equiv \frac{\hat{s}}{s}$$



• Relevant values of  $\sqrt{\hat{s}} = M_{W,Z}$  are indicated: good agreement for global fits (left), but more variation for other sets (right).

Status of MSTW PDF analysis

Status of MSTW PDF analysis W and Z production Higgs, top and jet production Ratio of NNLO quark-antiquark luminosity functions

Benchmark



NNLO trend between groups similar to NLO (apart from HERAPDF)

25/60

G. Watt



- Global fits in good agreement for σ<sub>W<sup>±</sup></sub> and σ<sub>Z<sup>0</sup></sub> (left plots).
- Small PDF uncertainties in predictions for W/Z ratio:

$$\frac{\sigma_{W^+} + \sigma_{W^-}}{\sigma_{Z^0}} \sim \frac{u(x_1) + d(x_1)}{0.29 \, u(\tilde{x}_1) + 0.37 \, d(\tilde{x}_1)}$$





- HERAPDF1.5 closer to global fits at NNLO for  $\sigma_{W^{\pm}}$  and  $\sigma_{Z^{0}}$  (left plots).
- W/Z ratio insensitive to NNLO corrections (and α<sub>S</sub>):



Status of MSTW PDF analysis Benchmark W and Z production Higgs, top and jet production  $\alpha_S$  from DIS Summa on NLO  $W^+$  and  $W^-$  total cross sections versus  $\alpha_S(M_Z^2)$ 



- Slightly more spread in separate σ<sub>W<sup>+</sup></sub> and σ<sub>W<sup>-</sup></sub>.
- Reflected in  $W^+/W^-$  ratio:

$$\frac{\sigma_{W^+}}{\sigma_{W^-}} \sim \frac{u(x_1)\bar{d}(x_2)}{d(x_1)\bar{u}(x_2)} \sim \frac{u(x_1)}{d(x_1)}$$



Status of MSTW PDF analysis Benchmark W and Z production  $Higgs, top and jet production <math>\alpha_S$  from DIS  $\alpha_S$  from DIS  $\alpha_$ 



- HERAPDF1.5 closer to global fits at NNLO for  $\sigma_{W^+}$  and  $\sigma_{W^-}$  (left plots).
- W<sup>+</sup>/W<sup>-</sup> ratio insensitive to NNLO corrections (and α<sub>5</sub>):





• Consolidate two cross section measurements (and their ratio).



- Luminosity uncertainty of 3.4% (ATLAS) or 4% (CMS).
- Know correlation of both data and theory (from PDFs).



• Correlation of ellipse ⇔ uncertainty in ratio of cross sections.



• Largest uncertainty in ATLAS/CMS total cross-section ratios from acceptance calculation ⇒ compare to theory within acceptance.

[http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-06/]



• NNLO comparisons now possible using FEWZ or DYNNLO codes.

## $W^{\pm} ightarrow \ell^{\pm} u$ charge asymmetry at the LHC

$$\begin{aligned} A_W(y_W) &= \frac{\mathrm{d}\sigma(W^+)/\mathrm{d}y_W - \mathrm{d}\sigma(W^-)/\mathrm{d}y_W}{\mathrm{d}\sigma(W^+)/\mathrm{d}y_W + \mathrm{d}\sigma(W^-)/\mathrm{d}y_W} \approx \frac{u_v(x_1) - d_v(x_1)}{u(x_1) + d(x_1)} \\ A_\ell(\eta_\ell) &= \frac{\mathrm{d}\sigma(\ell^+)/\mathrm{d}\eta_\ell - \mathrm{d}\sigma(\ell^-)/\mathrm{d}\eta_\ell}{\mathrm{d}\sigma(\ell^+)/\mathrm{d}\eta_\ell + \mathrm{d}\sigma(\ell^-)/\mathrm{d}\eta_\ell} \equiv A_W(y_W) \otimes (W^\pm \to \ell^\pm \nu) \end{aligned}$$



- First PDF constraint from LHC data ( $\rightarrow$  NNPDF2.2).
- MSTW08 has input xu<sub>v</sub> ∝ x<sup>0.29±0.02</sup> and xd<sub>v</sub> ∝ x<sup>0.97±0.11</sup>. Many other groups assume equal powers ⇒ potential bias.



• Wide spread in predictions using different NNLO PDF sets.



[http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2011-06/]



 ATLAS provide differential cross sections for W<sup>+</sup> and W<sup>-</sup> with information on correlated systematic uncertainties.
 ⇒ Potentially more useful for PDF fits than simply A<sub>ℓ</sub>(η<sub>ℓ</sub>).  $\begin{array}{c} \begin{array}{c} \mbox{Status of MSTW PDF analysis}\\ \mbox{Occessors} \end{array} \end{array} \xrightarrow{\mbox{Benchmark}} W \mbox{ and $Z$ production}\\ \mbox{Occessors} \end{array} \xrightarrow{\mbox{Higgs, top and jet production}\\ \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Higgs, top and jet production}\\ \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Status of MSTW PDF analysis}\\ \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Wand $Z$ production}\\ \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \left. \begin{array}{c} \mbox{Occessors} \end{array} \xrightarrow{\mbox{Occessors}} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \xrightarrow{\mbox{Occessors}} \end{array} \xrightarrow{\mbox{Occessors}} \xrightarrow{\mbo$ 



- Outstanding issues to be resolved concerning Tevatron data, particularly when split up into  $p_T^{\ell}$  bins [MSTW, arXiv:1006.2753].
- **Current plan:** consider only inclusive  $p_T^{\ell}$  bin, try to fit nuclear effects in deuteron structure functions simultaneously with PDFs.

Benchmark

W and Z production

Higgs, top and jet production

as from DIS Summa

## Exclusion limits at 95% C.L. for SM Higgs boson



### [TEVNPHWG, arXiv:1107.5518]

|          | $M_H$ (GeV) | $x \sim M_H/\sqrt{s}$ |
|----------|-------------|-----------------------|
| Tevatron | 156 – 177   | 0.08 - 0.09           |
|          | 146 – 232   | 0.02 - 0.03           |
| ATLAS    | 256 – 282   | 0.04 - 0.04           |
|          | 296 – 466   | 0.04 - 0.07           |
|          | 145 – 216   | 0.02 - 0.03           |
| CMS      | 226 – 288   | 0.03 – 0.04           |
|          | 310 - 340   | 0.04 – 0.05           |

•  $\sigma_{\rm SM}$  uses **MSTW 2008** PDFs.

G. Watt



## Tevatron Higgs exclusion limits: a critical appraisal

### [Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832]



#### [Baglio, Djouadi, Ferrag, Godbole, arXiv:1101.1832]



## Erratum-ibid. B 702 (2011) 105



38/60

#### Status of MSTW PDF analysis W and Z production Higgs, top and jet production $gg \rightarrow H$ total cross sections versus SM Higgs mass $M_H$

Benchmark



HERAPDF1.5 and NNPDF2.1 results agree with MSTW08.

Status of MSTW PDF analysis  $gg \rightarrow H$  total cross sections versus  $\alpha_{S}(M_{Z}^{2})$ 



•  $\alpha_S(M_Z^2)$  values can only *partly* explain low  $\sigma_H$  for ABKM09.

G. Watt

Status of MSTW PDF analysis Benchmark W and Z production

Higgs, top and jet production 

## Ratio of gluon-gluon luminosity functions



√ŝ/s

Status of MSTW PDF analysis Benchmark W and Z production Higgs, to

Higgs, top and jet production

α<sub>S</sub> from DIS Summar 0000000 0

## Ratio of gluon-gluon luminosity functions



• Relevant values of  $\sqrt{\hat{s}} = M_H, 2m_t$  are indicated.

G. Watt

## Top-pair production at the Tevatron and LHC



- ~80% of  $\sigma_{t\bar{t}}^{
  m NLO}$  from gg at LHC (7 TeV), cf. ~15% at Tevatron.
- Compare NLO and various NNLO approximations for total  $\sigma_{t\bar{t}}$  (pb) for  $m_t = 173$  GeV [Kidonakis, Pecjak, arXiv:1108.6063]:

| Calculation                            | Tevatron                                 | LHC (7 TeV)                         |
|----------------------------------------|------------------------------------------|-------------------------------------|
| NLO                                    | $6.74^{+0.36}_{-0.76}{}^{+0.37}_{-0.24}$ | $160^{+20}_{-21}^{+8}_{-9}$         |
| Aliev et al. [arXiv:1007.1327]         | $7.13^{+0.31}_{-0.39}{}^{+0.36}_{-0.26}$ | $164^{+3}_{-9}^{+9}_{-9}$           |
| Kidonakis [arXiv:1009.4935]            | $7.08^{+0.00}_{-0.24}$                   | $163^{+7}_{-5}{}^{+9}_{-9}$         |
| Ahrens <i>et al.</i> [arXiv:1105.5824] | $6.65^{+0.08}_{-0.41}{}^{+0.33}_{-0.24}$ | $156^{+8}_{-9}^{+8}_{-9}^{+8}_{-9}$ |

First uncertainty is perturbative (μ<sub>R,F</sub> variation etc.).
 Second uncertainty is the MSTW08 PDF error at 90% C.L.

# $tar{t}$ total cross sections versus $lpha_{\mathcal{S}}(M_Z^2)$ at the LHC



- NNLO (approx.) using HATHOR code [Aliev et al., arXiv:1007.1327].
- Compare to single most precise current LHC measurements.
  - CMS: σ<sub>tī</sub> = 164 ± 3(stat.) ± 12(syst.) ± 7(lumi.) pb (e/μ+jets+b-tag) [CMS PAS TOP-11-003]
  - ATLAS:  $\sigma_{t\bar{t}} = 179.0 \pm 9.8 (\text{stat.+syst.}) \pm 6.6 (\text{lumi.}) \text{ pb}$ (using kinematic information of lepton+jets events) [ATLAS-CONF-2011-121]
- Tevatron:  $m_t = 173.2 \pm 0.9$  GeV [TEVEWWG, arXiv:1107.5255]. Increasing  $m_t$  by 2 GeV decreases predicted  $\sigma_{t\bar{t}}$  at LHC by 6%.





- **Problem:** NNLO  $\hat{\sigma}$  unknown, approximate with NLO  $\hat{\sigma}$  and 2-loop threshold corrections [Kidonakis, Owens, hep-ph/0007268].
- Jet cross sections calculated with FASTNLO [Kluge, Rabbertz, Wobisch, hep-ph/0609285]: includes 2-loop threshold corrections.
- Take different scale choices  $\mu_R = \mu_F = \mu = \{p_T/2, p_T, 2p_T\}$ as some indication of the theoretical uncertainty.





- K-factor with  $\mu = p_T$  more uniform across  $|y_{\text{JET}}|$  bins than  $\mu = p_T/2$ .
- Scale dependence stabilised by inclusion of 2-loop threshold corrections.
- $\bullet\,$  Lack of exact NNLO should not prevent use of jet data in PDF fits.

## Inclusive jet production at the Tevatron and LHC





[MSTW, arXiv:0905.3531]

- Quarks constrained by other data ⇒ jets constrain gluon.
- LHC jets: generally lower  $x_T$ , no correlated systematics.
- Current best constraint on high-x gluon from **Tevatron jets**.

## Treatment of correlated systematic uncertainties

• Important to account for *correlated* systematic uncertainties of experimental data points [CTEQ6, hep-ph/0201195]:

$$\chi^2 = \sum_{i=1}^{N_{\text{pts.}}} \left( \frac{\hat{D}_i - T_i}{\sigma_i^{\text{uncorr.}}} \right)^2 + \sum_{k=1}^{N_{\text{corr.}}} r_k^2, \quad (1)$$

where  $\hat{D}_i \equiv D_i - \sum_{k=1}^{N_{corr.}} \mathbf{r}_k \sigma_{k,i}^{corr.}$  are *shifted* data points.

- Trade-off between systematic shifts  $r_k$  and fitted parameters.
- More traditional form (with hidden systematic shifts):

$$\chi^{2} = \sum_{i=1}^{N_{\text{pts.}}} \sum_{j=1}^{N_{\text{pts.}}} (D_{i} - T_{i}) (V^{-1})_{ij} (D_{j} - T_{j}), \quad (2)$$

where  $V_{ij} = \delta_{ij} (\sigma_i^{\text{uncorr.}})^2 + \sum_{k=1}^{N_{\text{corr.}}} \sigma_{k,i}^{\text{corr.}} \sigma_{k,j}^{\text{corr.}}$ 

•  $\chi^2$  definition similar to Eq. (1) used by **MSTW** and CTEQ.  $\chi^2$  definition similar to Eq. (2) used by ABKM and NNPDF.

Description of CDF II inclusive jet  $(k_T)$  data [hep-ex/0701051]

Higgs, top and jet production

W and Z production

• Values of  $\chi^2/N_{\rm pts.}$  for different NNLO PDFs and scale choices:

| NNLO PDF   | $\alpha_{S}(M_{Z}^{2})$ | $\mu = p_T/2$         | $\mu = p_T$           | $\mu = 2p_T$          |
|------------|-------------------------|-----------------------|-----------------------|-----------------------|
| MSTW08     | 0.1171                  | 1.39 (+0.35)          | 0.69 (-0.45)          | 0.97 (-1.30)          |
| NNPDF2.1   | 0.1190                  | 0.68 (-0.77)          | 0.71 (-2.02)          | 0.71 (- <b>3.46</b> ) |
| HERAPDF1.0 | 0.1145                  | 2.37 ( <i>-2.65</i> ) | 1.48 (- <b>3.64</b> ) | 1.29 (- <b>4.12</b> ) |
| HERAPDF1.0 | 0.1176                  | 2.24 (-0.48)          | 1.13 (-1.60)          | 1.09 (-2.23)          |
| HERAPDF1.5 | 0.1176                  | 1.61 (+1.22)          | 0.77 (+0.30)          | 1.06 (-0.39)          |
| ABKM09     | 0.1135                  | 1.53 (- <b>4.27</b> ) | 1.23 (- <b>5.05</b> ) | 1.44 (- <b>5.65</b> ) |
| JR09       | 0.1124                  | 0.75 (+0.13)          | 1.26 (-0.61)          | 2.20 (-1.22)          |

- Numbers in brackets are the systematic shift ("-r<sub>lumi</sub>.") for the 5.8% luminosity uncertainty.
- Highlight in *italics* if  $|\eta_{\text{umi.}}| \in [1, 3]$  and in **bold** if  $|\eta_{\text{umi.}}| > 3$ .
- Optimal χ<sup>2</sup> for ABKM09 requires data to be normalised downwards by ~30%, i.e. 5-σ luminosity shift.

Status of MSTW PDF analysis

Benchmark

## Description of Tevatron W/Z total cross sections



- CDF/DØ measurements of W/Z cross sections are dominated by ~ 6% luminosity uncertainty (common to jet cross sections).
- All NNLO PDFs in good agreement with W/Z cross sections.
- Can use Tevatron W/Z cross sections as a luminosity monitor: demand agreement with theory prediction to effectively remove normalisation uncertainty from jet cross sections.
- Done automatically in **MSTW08** fit by fitting CDF  $d\sigma_Z/dy_Z$ .

Status of MSTW PDF analysis Ber

Benchmark W and Z production

higgs, top and jet production

tion  $\alpha_S$  from DIS Sur 0000000 0

## Data/theory ratio for MSTW08 and ABKM09



- ABM studies: data lie above theory even after refitting. But still 15% increase in  $\sigma_H$  ( $M_H = 165$  GeV) at Tevatron.
- Would be interesting to see impact of Tevatron jet data on ABKM09 fit with *constrained* CDF/DØ normalisation.

Status of MSTW PDF analysisBenchmark<br/>occorrectionW and Z production<br/>occorrectionHiggs, top and jet production<br/>occorrection $\alpha_S$  from DIS<br/>occorrectionSummark<br/>occorrectionDescription ofCDFII inclusivejet $(k_T)$ data[hep-ex/0701051]

- More realistic χ<sup>2</sup> computation without complication of including W/Z data: simply constrain |η<sub>umi.</sub>| < 1.</li>
- Values of  $\chi^2/N_{\rm pts.}$  for different NNLO PDFs and scale choices:

| NNLO PDF   | $\alpha_{S}(M_{Z}^{2})$ | $\mu = p_T/2$ | $\mu = p_T$ | $\mu = 2p_T$ |
|------------|-------------------------|---------------|-------------|--------------|
| MSTW08     | 0.1171                  | 1.39          | 0.69        | 0.97         |
| NNPDF2.1   | 0.1190                  | 0.68          | 0.81        | 1.29         |
| HERAPDF1.0 | 0.1145                  | 2.64          | 2.15        | 2.20         |
| HERAPDF1.0 | 0.1176                  | 2.24          | 1.17        | 1.23         |
| HERAPDF1.5 | 0.1176                  | 1.61          | 0.77        | 1.06         |
| ABKM09     | 0.1135                  | 2.55          | 2.76        | 3.41         |
| JR09       | 0.1124                  | 0.75          | 1.26        | 2.21         |

• Highlight in **bold** if  $\chi^2/N_{\rm pts.} < 0.83$ , i.e. 90% C.L. region.

ark W and Z production

Higgs, top and jet production ○○○○○○○○○○○○○○○

 $\begin{array}{ccc} \text{oduction} & \alpha_S \text{ from DIS} \\ 00 & 0000000 \end{array}$ 

Summai

## Distribution of pulls and systematic shifts

$$\chi^2 = \sum_{i=1}^{N_{\text{pts.}}} \left(\frac{\hat{D}_i - T_i}{\sigma_i^{\text{uncorr.}}}\right)^2 + \sum_{k=1}^{N_{\text{corr.}}} r_k^2$$

- Plot distribution of  $\chi^2$  contributions from each of two terms:



- MSTW08: both distributions follow Gaussian behaviour.
- ABKM09: broader tail for pulls, non-Gaussian systematic shifts.

## Treatment of $F_L$ correction for NMC data

Benchmark

Status of MSTW PDF analysis

 Recent claim that bulk of MSTW/ABKM difference explained by F<sub>L</sub> for NMC data [Alekhin, Blümlein, Moch, arXiv:1101.5261].

Higgs, top and jet production

 $\alpha_S$  from DIS

W and Z production

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}Q^2} \simeq \frac{4\pi\alpha^2}{x\,Q^4} \left[1 - y + \frac{y^2/2}{1 + R(x,Q^2)}\right] F_2(x,Q^2)$$

• ABKM fit NMC cross sections, **MSTW** fit NMC  $F_2$  corrected for  $R = \sigma_L / \sigma_T \simeq F_L / (F_2 - F_L)$ , where [NMC, hep-ph/9610231]:

$$R(x,Q^2) = egin{cases} R_{
m NMC}(x) & ext{if } x < 0.12 \ R_{
m 1990}(x,Q^2) & ext{if } x > 0.12 \end{cases}$$

| ABKM09                                               | MSTW08                                           |
|------------------------------------------------------|--------------------------------------------------|
| Fit NMC cross section                                | Fit NMC F <sub>2</sub>                           |
| $Q^2 \ge 2.5  { m GeV}^2,  W^2 \ge 3.24  { m GeV}^2$ | $Q^2 \geq 2~{ m GeV}^2,  W^2 \geq 15~{ m GeV}^2$ |
| Fit empirical higher-twist                           | Neglect higher-twist                             |
| Separated beam energies                              | Averaged beam energies                           |
| Correlated systematics                               | Neglect correlations                             |
| 3 input gluon parameters                             | 7 input gluon parameters                         |
| No jet data                                          | Tevatron jet data                                |

# Effect of NMC $F_L$ treatment on $\alpha_S(M_Z^2)$ and $\sigma_H$

| NNLO PDF                                               | $\alpha_S(M_Z^2)$ | $\sigma_H$ at Tevatron | $\sigma_H$ at 7 TeV LHC |
|--------------------------------------------------------|-------------------|------------------------|-------------------------|
| MSTW08                                                 | 0.1171            | 0.342 pb               | 7.91 pb                 |
| Use $R_{1990}$ for NMC $F_2$                           | 0.1167            | -0.7%                  | -0.9%                   |
| Cut NMC $F_2$ (x < 0.1)                                | 0.1162            | -1.2%                  | -2.1%                   |
| Cut all NMC $F_2$ data                                 | 0.1158            | -0.7%                  | -2.1%                   |
| Cut $Q^2 < 5 \text{ GeV}^2$ , $W^2 < 20 \text{ GeV}^2$ | 0.1171            | -1.2%                  | +0.4%                   |
| Cut $Q^2 < 10~{ m GeV^2}$ , $W^2 < 20~{ m GeV^2}$      | 0.1164            | -3.0%                  | -1.7%                   |
| Fix $\alpha_S(M_Z^2)$                                  | 0.1130            | -11%                   | -7.6%                   |
| Input $xg > 0$ , no jets                               | 0.1139            | -17%                   | -4.9%                   |
| ABKM09                                                 | 0.1135            | -26%                   | -11%                    |



- $\alpha_S$  and  $\sigma_H$  insensitive to treatment of NMC  $F_L$ .
- Similar stability found by NNPDF [arXiv:1102.3182], but using a fixed  $\alpha_S(M_Z^2)$ .
- **Conclusion:** jets stabilise fit (lessen sensitivity to details).

## Common lore that DIS-only fits prefer low $\alpha_{5}$ . Is it true?

## ABKM09: $\alpha_S(M_Z^2) = 0.1135 \pm 0.0014$ , cf. **MSTW08:** 0.1171 $\pm$ 0.0014.



• Answer: Not all DIS data sets prefer low  $\alpha_S(M_Z^2)$  values.

- True only for BCDMS, and for E665 and SLAC ep data.
- NMC, SLAC *ed* and HERA data prefer high  $\alpha_S(M_Z^2)$  values.

G. Watt

## Correlation between $\alpha_{S}$ and gluon distribution

Known that α<sub>S</sub> is anticorrelated with low-x gluon through scaling violations of HERA data: ∂F<sub>2</sub>/∂ln(Q<sup>2</sup>) ~ α<sub>S</sub> g. Then α<sub>S</sub> is correlated with high-x gluon through momentum sum rule.



• MSTW08:  $\alpha_S(M_Z^2) = 0.1171 \pm 0.0014$  [arXiv:0905.3531].

• Positive input gluon:  $\alpha_{\mathcal{S}}(M_Z^2) = 0.1157$ , but  $\Delta \chi^2_{
m global} = 63$ .

## What is $\alpha_s$ from only DIS in the MSTW08 NNLO fit?

[Studies prompted by question from G. Altarelli, December 2010]

- Global fit:  $\alpha_S(M_Z^2) = 0.1171 \pm 0.0014$  [arXiv:0905.3531].
- **DIS-only fit** gives  $\alpha_S(M_Z^2) = 0.1104$  (BCDMS-dominated), but input xg < 0 for x > 0.4 due to lack of data constraint.  $\Rightarrow F_2^{\text{charm}} < 0$  and  $\chi^2/N_{\text{pts.}} \sim 10$  for Tevatron jets.
- DIS-only fit fixing high-x gluon parameters gives  $\alpha_{S}(M_{Z}^{2}) = 0.1172$ .
- DIS-only fit without BCDMS gives  $\alpha_S(M_Z^2) = 0.1193$ .
- Global fit without BCDMS gives  $\alpha_{S}(M_{Z}^{2}) = 0.1181$ .
- Conclusion: Tevatron jet data vital to pin down high-x gluon, giving smaller low-x gluon and therefore larger α<sub>S</sub> in the global fit compared to a DIS-only fit, at the expense of some deterioration in the fit quality of the BCDMS data.

W and Z production Higgs, top and jet production Status of MSTW PDF analysis Benchmark  $\alpha_{S}$  from DIS 0000000





- "DIS F2" from BBG06 [Blümlein, Böttcher, Guffanti, hep-ph/0607200].
- Non-singlet analysis: free of assumptions on gluon (in principle).

Status of MSTW PDF analysis Benchmark W and Z production Higgs, top and jet production  $\alpha_{s}$  from DIS Summary

## Non-singlet QCD analysis of DIS data [BBG06, hep-ph/0607200]

| Order | $\alpha_{S}(M_{Z}^{2})$ (expt.)     |
|-------|-------------------------------------|
| NLO   | $0.1148\substack{+0.0019\\-0.0019}$ |
| NNLO  | $0.1134^{+0.0019}_{-0.0021}$        |
| NNNLO | $0.1141^{+0.0020}_{-0.0022}$        |

- Fit  $F_2^p$  and  $F_2^d$  for x > 0.3 (neglect singlet contribution), and  $F_2^{NS}$ .
- But singlet makes up about: 10% of  $F_2^p$  at x = 0.3, 2% of  $F_2^p$  at x = 0.5.
- Exercise: perform MSTW08 NNLO DIS-only fit to  $F_2^p$  and  $F_2^d$  for x > 0.3 (282 points, 160 from BCDMS).  $\Rightarrow \alpha_S(M_Z^2) = 0.1103$  (0.1130) without (with) singlet included. (Lower than BBG06 due to lack of y > 0.3 cut on BCDMS.)
- **Conclusion:** low value of  $\alpha_S(M_Z^2)$  found by BBG06 due to (i) dominance of BCDMS data and (ii) neglect of singlet.
- Closest possible to reliable extraction of  $\alpha_S(M_Z^2)$  from DIS is MSTW08 NNLO combined analysis of DIS, DY and jet data:

$$\alpha_{S}(M_{Z}^{2}) = 0.1171 \pm 0.0014 \ (68\% \ C.L.) \pm 0.0034 \ (90\% \ C.L.)$$

| 00000000000000000000000000000000000000 | 0000 | 0000000000000 | 000000000000000000000000000000000000000 | 0000000 | • |
|----------------------------------------|------|---------------|-----------------------------------------|---------|---|
| Summary                                |      |               |                                         |         |   |

- MSTW08 still fairly current: no immediate update planned.
- The LHC is starting to provide useful input data for PDF fits.
- Now reasonably good agreement between *global* fits from **MSTW08**, CT10 and NNPDF2.1, all using GM-VFNS.
- More variation with other PDF sets using more limited data sets and/or restrictive input PDF parameterisations.
- (But HERAPDF1.5 NNLO is surprisingly close to MSTW08.)
- Tevatron jet data are important to pin down the high-x gluon, with indirect effect on the value of  $\alpha_S(M_Z^2)$  extracted.