Proton structure -

 cross sections and structure functions at low x and low to medium Q^{2}Prabhdip Kaur Devgun (MPI Munich, P.U. Chd) Collaborations

New Trends in HERA Physics 2011, September 25-28, 2011 Ringberg, Germany

HERA Accelerator (1992-2007) Performance

Dedicated data taking for F_{L} at end of HERA
>NC Data span six orders of magnitude four-momentum-transfer squared, Q^{2}, and in Bjorken x:

$$
6.10^{-7} \leq x \leq 0.65 \text { and } 0.045 \leq \mathrm{Q}^{2} \leq 30000 \mathrm{GeV}^{2}, 0.005 \leq \mathrm{y} \leq 0.95
$$

$C C$ data : $1.3 \cdot 10^{-2} \leq x \leq 0.4$ and $300 \leq Q^{2} \leq 30000 \mathrm{GeV}^{2}, 0.037 \leq y \leq 0.76$
How data can be used to understand the proton structure? \rightarrow Ritu's talk
-The high- Q^{2} CC data, together with the difference between $N C e^{+} p$ and $e^{-} p$ cross
sections at
high Q^{2}, constrain the valance quark distribution
-The use of the HERA CC data \rightarrow down quark distribution in the proton , without
assuming isospin symmetry
-The low Q^{2} and low x data can be used to determine sea quark and gluon pdfs
$>100 \mathrm{pb}^{-1}$ for each experiment for $\mathrm{e}^{+} \mathrm{p}$ and $15 \mathrm{pb}^{-1}$ for e-p for HERA-I
$>$ Both H 1 and ZEUS have determined their own sets of quark and gluon momentum distributions in the proton ZEUSPDF and H1PDF

Combined H1 ZEUS data could be used to form HERAPDF fits
-HERA-I: 1994-97 Ep was kept at 820 GeV ; 1998-2000 Ep increased to 920 GeV

Data Set		x Range		$\begin{gathered} Q^{2} \mathrm{G} \end{gathered}$	$\begin{aligned} & \text { lange } \\ & \mathrm{v}^{2} \end{aligned}$	$\frac{L}{\mathrm{pb}^{-1}}$	e^{+} / e^{-}	$\begin{array}{r} \sqrt{5} \\ \mathrm{GeV} \end{array}$
H1 svx-mb	95-00	(5x10-6)	0.02	. 12	12	2.1	$e^{+} p$	301.319
H1 low Q^{2}	96-00	2×10^{-4}	0.1	12	150	22	$e^{+} p$	301.319
HINC	94.97	0.0032	0.65	150	30000	35.6	$e^{+} p$	301
H1 CC	94.97	0.013	0.40	300	150000	35.6	$e^{+} p$	301
H1 NC	98-99	0.0032	0.65	150	30000	16.4	$e^{-} p$	319
H1 CC	98-99	0.013	0.40	300	15000	16.4	$e^{-} p$	319
H1NCHY	98-99	0.0013	0.01	100	800	16.4	$e^{-} p$	319
H1 NC	$99-00$	0.0013	0.65	100	30000	65.2	$e^{+} p$	319
H1CC	99-00	0.013	0.40	300	15000	65.2	$e^{+} p$	319
ZEUS BPC	95	2×10^{-6}	6×10^{-7}	0.11	0.65	1.65	$e^{+} p$	301
ZEUS BPT	97	6×10^{-7}	0.001	0.045	0.65	3.9	$e^{+} p$	301
ZEUS SVX	95	1.2×10^{-5}	0.0019	0.6	17	0.2	$e^{+} p$	301
ZEUS NC	96-97	6×10^{-5}	0.65	2.7	30000	30.0	$e^{+} p$	301
ZEUSCC	94.97	0.015	0.42	280	17000	47.7	$e^{+} p$	301
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	$e^{-} p$	319
ZEUSCC	98-99	0.015	0.42	280	30000	16.4	e^{-p}	319
ZEUS NC	$99-00$	0.005	0.65	200	30000	63.2	$e^{+} p$	319
ZEUSCC	99-00	0.008	0.42	280	17000	60.9	$e^{+} p$	319

-For combination The H 1 and ZEUS data are transformed to a common grid of ($\mathrm{x} ; \mathrm{Q}^{2}$) points.
-The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy.
-The combination of the data sets uses the $\chi 2$ minimisation method
high precision
H1 and ZEUS

-HERAPDF1.0 based on $\overline{\mathrm{MS}}$ scheme

- Q^{2} is taken as Factorization and re-normalization scale
-Starting $\mathrm{Q}_{0}{ }^{2}$ scale $=1.9 \mathrm{GeV}^{2}$, $\left(\mathrm{Q}^{2}<\mathrm{m}_{\mathrm{c}}{ }^{2}\right)$
$-\alpha_{s}=0.1176$

H1 and ZEUS

HERAPDF1.0 describes data well

H1 and ZEUS

Observe valence like shape of the gluon at the starting scale

Neutral Current Cross section at low and medium $\mathrm{Q}^{2} \&$ Structure functions

At Low and medium Q2 xF3 is negligible NC Double differential can be described as:

$$
\frac{d^{2} \sigma^{e^{ \pm} p \rightarrow e^{ \pm} X}}{d x d Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}} \underbrace{\left(1+(1-y)^{2}\right)}_{Y_{ \pm}=1 \pm(1-y)^{2}} \cdot(\underbrace{F_{2}\left(x, Q^{2}\right)-\frac{y^{2}}{Y_{+}} F_{L}\left(x, Q^{2}\right)}_{\text {reduced cross section }})
$$

Two proton structure functions define inclusive DIS ep scattering cross section.
$>\mathrm{F}_{2}$ determines sum of quark distributions.
$>F_{L}$, at low x, determines gluon distribution.
$>$ The F_{2} term dominates the cross section, has been measured for 15 years at HERA.
$>$ The F_{L} term is sizeable only at large values of inelasticity y . It was directly accessed in the last 4 months of HERA's operation

DIS at Low/Medium Q² as Photon

Proton Scattering

> The NC DIS process may be interpreted as scattering of an virtual photon off an proton
> The virtual photon may be transversely or longitudinally polarized

Quark Parton Model (QPM):

$$
\begin{aligned}
& F_{1}(x)=\frac{1}{2 x} \sum_{q} e_{q}^{2} x q(x) \\
& F_{2}(x)=\sum_{q} e_{q}^{2} x q(x) \\
& F_{L}(x)=F_{2}-2 x F_{1}=0
\end{aligned}
$$

Callan Gross relation

Longitudinal Structure Function F_{L}

Scattering of longitudinally polarized photons on quarks in helicity frame

J_{z} conservation is not possible

$$
F_{L} \propto \sigma_{L}=0
$$

$$
F_{L}=\frac{\alpha_{s}}{4 \pi} x^{2} \int_{x}^{1} \frac{d z}{z^{3}}\left[\frac{16}{3} \sum_{q} z e_{q}^{2}(q+\bar{q})+8 \sum_{q} e_{q}^{2}\left(1-\frac{x}{z}\right) \cdot z g\right]
$$

-Fixed Target F_{L} is small at large x (spin $1 / 2$ quarks), indications for increase towards low x -H1: hints to large F_{L} when F_{2} is assumed to be known

Contd

- Predictions vary in the low x region
-Direct F_{L} measurement in the low x would help to understand gluon distribution in this region

R. Thorne DIS08

Precise knowledge of F_{2} and F_{L} is necessary for LHC physics and for the future investigations of saturation and gluonic structure phenomena at same x and Q^{2} but different $\mathrm{y}=\mathrm{Q}^{2 / \mathrm{y}} \cdot \mathrm{s} \rightarrow$ vary s

-Change proton beam energy to change cms energy

- Large level arm in $y^{2 /} / Y_{+}$
- Measurement at high y in LER
- Intercept of the fit gives F_{2}
- Nagetive slope gives F_{L}
as $y=1-E_{e}^{\prime} / E_{e}(1-\cos \theta) \rightarrow$ high y means low E_{e}^{\prime}

F_{L} measurement with H 1

H1 background subtraction based on data.

Event selection Criteria

$\mathrm{E}_{\mathrm{e}}^{\prime}>3.4 \mathrm{GeV}$
Tracking coverage was required

>At small energies severe contamination by γp events.
\rightarrow Those are charge symmetric, apart from small effects due to antiproton vs protons, which is measured using e+p and e-p data, and corrected for accordingly

Event Selection:

Electron in backward Cal $\mathrm{E}_{\mathrm{e}}>6 \mathrm{GeV}$ (Cluster \& Trigger) Hits in CTD \& MVD (reject neutrals)

$$
y=1-\frac{E_{e}^{\prime}}{E_{e}} \sin ^{2} \frac{\theta_{e}}{2}, \quad Q^{2}=\frac{E_{e}^{\prime 2} \sin ^{2} \theta_{e}}{1-y}
$$

Photoproduction BG:

Removed using PYTHIA MC Control using 6 m electron tagger.
Complimentary studies with gp enriched data sample.

ZEUS

Eur.Phys.J.C71:1579,2011

H1 Collaboration

Turnover at low x is small but visible
-Combined H1 data from years 1995-2000, $\mathrm{Ep}=820$ and $\mathrm{Ep}=920 \mathrm{GeV}$ with HERA II HER data $\cdot 0.2<\mathrm{Q}^{2}<150 \mathrm{GeV}^{2}$ region is covered, corresponding to $5.10^{-6} \leq x \leq 0.15$

- Extends to high y $=0.85$
- Used for several phenomenological model analyses

Using cross section in Q^{2} range of 2 to $45 \mathrm{GeV}^{2}$

Eur.Phys.J.C71:1579,2011

For $3.5 \leq \mathrm{Q}^{2} \leq 45 \mathrm{GeV}^{2}$ and $7.10^{-5}<\mathrm{x}<2.10^{-3}$ H1 Data supports constant $\mathrm{R}^{\sim} 0.26$

H1 Collaboration

H1 Collaboration

H1 measurements cover $1.5 \leq \mathrm{Q}^{2} \leq 45 \mathrm{GeV}^{2}$ and $2.7 \times 10^{-5} \leq \mathrm{x} \leq 2.10^{-3}$
Also shown are ZEUS F_{L} values, corrected to the Q^{2} values used by H1

ZEUS F Fxtraction

Straight line fit of $\sigma_{r} v s y^{2} / Y_{+}$
F_{L} slope, F_{2} intercept
$20 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<130 \mathrm{GeV}^{2}$
$5 \cdot 10^{-4}<x<7 \cdot 10^{-3}$
$5 \cdot 10^{-4}<x<7 \cdot 10^{-3}$
ZEUS

Phys. Lett. B682, 8 (2009)

ZEUS

Turnover at lower x is small but visible

Full information of correlated systematics taken into account

Extracted F_{L} and F_{2}-ZEUS

ZEUS

- Most precise F_{2} measurement from ZEUS in kinematic region studied
- F_{2} measurement without assumptions on F_{L}
- Data support a non-zero F_{L}
- Predictions for F_{2} and F_{L} are consistent with data

Average F_{L} and $R-Z E U S$

ZEUS

Averaged FL

- Data support non-zero FL
- Predictions are consistent with data

Averaged $R=F_{L} /\left(F_{2}-F_{L}\right)$

- $R=0.18_{-0.05}^{+0.07}$

Lower than the H 1 value extension to lower Q^{2}
The ZEUS published F_{L} analysis is performed in kinematic range:
$20 \mathrm{GeV}^{2}<\mathrm{Q}^{2}<130 \mathrm{GeV}^{2} \& 5 \cdot 10^{-4}<\mathrm{x}<7 \cdot 10^{-3}$
$\mathrm{Q}^{2}=4 . \mathrm{E}_{\text {beam }} \cdot \mathrm{E}_{\mathrm{el}} \cdot \cos ^{2}\left(\theta_{\mathrm{e}} / 2\right)$
ZEUS
Satellite vertex events:

$\theta_{\mathrm{e}}^{\prime}>\theta_{\mathrm{e}} \rightarrow$ with satellite vertex we can measure the electron's position with lower theta hence can go to lower $\mathrm{Q}^{2} \rightarrow$ extended kinematic range

Cross sections for lower Q^{2} region ZEUS

ZEUS-Prel-10-006

$>$ High y cross section measurement extended to Q^{2} of $5 \mathrm{GeV}^{2}$
$>$ Lower Q^{2} values are accessed using both satellite and nominal vertex cross sections
$>$ Good agreement with the ZEUS published results for most of the bins

ZEUS

ZEUS-Prel-10-006

$>$ For Low and Medium energy runs Q2 region was extended using nominal vertex cross sections only

ZEUS extended $\mathrm{F}_{2}, \mathrm{~F}_{\mathrm{L}}$ measurement

Uses:

- Data from HERA-I
- Combined Satellite and nominal vertex cross section from HER, MER and LER

A typical Fit for $\mathrm{Q}^{2}=17 \mathrm{GeV}^{2}$
Rosenbluth plot

Summary

- HERA I data have combined - improves precision significantly
- \quad Six orders of magnitude are covered in x and Q^{2}
- The combined cross sections are used to get DGLAP QCD fit HERAPDF1.0 Based solely on HERA data
HERA II measurements at low/medium Q^{2} :
- ZEUS Measured NC cross section, F_{2} and F_{L} in the $20<Q^{2}<130 \mathrm{GeV}^{2}$ region
- Most precise F_{2} values from ZEUS are obtained in the kinematic region covered.
- H1 has measured NC cross sections for $0.2<\mathrm{Q}^{2}<150 \mathrm{GeV}^{2}$ after combination with HERA I data
- H1 has calculated F2 and FL in the range $1.5 \leq \mathrm{Q}^{2} \leq 45 \mathrm{GeV}^{2}$
- ZEUS has extended cross section measurement to lower Q², ZEUS-H1 combination for new cross section bins is in the to do list-plans to publish low $Q^{2} F_{L}$.

Thanks....!!!

- Back up

Average $\mathrm{F}_{\mathrm{L}}<100 \mathrm{GeV}^{2}$

- MSTW and H1PDF 2009 predictions use the same scheme to calculate F_{L}.
- Data agree better with calculation of CTEQ
- Data is consistent with constant $R \sim 0.25$.
- Good agreement with IIM and GBW dipole models, $\operatorname{NLL}(1 / x)$ prediction.

Combination χ^{2}

$$
\chi_{\exp }^{2}(\boldsymbol{m}, \boldsymbol{b})=\sum_{i} \frac{\left[m^{i}-\sum_{j} \gamma_{j}^{i} m^{i} b_{j}-\mu^{i}\right]^{2}}{\delta_{i, \mathrm{stat}}^{2}\left(m^{i}-\sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right)+\left(\delta_{i, \text { uncor }} m^{i}\right)^{2}}+\sum_{j} b_{j}^{2}
$$

- μ^{i} - measured central value at point i
- $\gamma_{j}^{i}, \delta_{i, \text { stat }}, \delta_{i, \text { uncor }}$ - relative correlated systematic, statistical and uncorrelated systematic uncertainty.
The function $\chi_{\text {exp }}^{2}$ depends on the set of underlying physical quantities m^{i} (vector \boldsymbol{m}) and the set of systematic uncertainties $b_{j}(\boldsymbol{b})$.
All(normalization, correlated, uncorrelated) systematic uncertainties are assumed to be multiplicative and statistical errors are rescaled based on estimated (instead of measured) number of events.
Extra procedural error for if only normalizations are considered multiplicative.

Alternative: average/fit $\log \sigma_{r}$, in this case all uncertainties should be treated as additive (also normalizations). Consistent resulting average.

Input: $\mathrm{H} 1 \&$ ZEUS published cross sections [Inclusive NC, $\mathrm{CC} e^{ \pm} p$],

Combination Method:

[1] Swim H1 and ZEUS measurements to common grid (x, Q_{2}^{2}):
[2] For CC and NC [y<0.35]: $\quad \sigma_{820} \rightarrow \sigma_{920}$
[3] Build a χ^{2} function for each data-set, exp:
Combination at point i \qquad [Estimate of 1 true cross section]

$$
\begin{aligned}
& \chi_{\text {exp }}^{2}(m, b)=\sum_{i} \frac{\left.\left[m^{i}-\sum_{j} \mid \gamma_{j}^{\prime} m i b_{j}\right]-\mu\right]^{2}}{\delta_{i, \text { sat }}^{2} \mu^{i}\left(m^{i}-\sum_{j} \gamma \mid m^{i} b j\right)+\left(\delta_{\text {,unco }} m^{i}\right)^{2}}+\sum_{j} b_{j}^{2} \\
& \text { Shify of the cross section to } j^{2} \text { source of correlated } \\
& \text { vurce of correlated } \\
& \text { uncertainty }
\end{aligned}
$$ uncertainty:

γ_{j} defined as the relative change of the measurement for a 1 sigma shift of the

$$
\delta_{\text {istan }} / \delta_{\text {,unoor }} \begin{aligned}
& \text { Relative stat. } / \text { syst. error on the thent }
\end{aligned}
$$

PDF fits with F_{L} data included

Measured cross sections for 3 data sets (HER, LER, MER) are included in ZEUS PDF fits
Data has impact on the low x : Steeper rise of gluon at low x Sea and gluon uncertainty reduced

Expectations on F_{L}

Experiment

Fixed target: F_{L} is small at large x (spin $1 / 2$ quarks) indications for increase towards low x H1: hints to large F_{L} when F_{2} is assumed to be known Eur.Phvs.J.C21:33-61.2001

Theory (pQCD)
F_{L} prediction related to the gluon density, the size and the uncertainties on xg constraints require max accuracy and range

Theory developed to NNLO
[W.van Neerven (\dagger), J.Vermaseren, et al.]
Global/detailed pdf analyses [CTEQ, MRST, Alechin, HERA, ...]

HERA ep Collider: 1992-2007

Two colliding beam experiments: H 1 and ZEUS $\sim 0.5 \mathrm{fb}^{-1}$ collected pre experiment approximately same amount of collisions with electrons and positrons of Left- and right-handed polarisation
dedicated low Ep runs $\mathrm{Ep}=460 \mathrm{GeV}, 575 \mathrm{GeV}$

Three \mathbf{Q}^{2} ranges

3 to $12 \mathrm{GeV}^{2}$ SpaCal+BST
 prelim. 04/09----mention paper

12 to $90 \mathrm{GeV}^{2}$ SpaCal+CT:
published 06-- \rightarrow check for paper
35 to 800 GeV 2 LAr+CT: $----\rightarrow$ mention paper
prelim. 03/08
12-45 GeV2 SpaCal+BST_CJC (Eur.Phys.J.C71:1579,2011)

Figure 4: PDFs of the previous and current QCD fits by the H1 collaboration (left and middle) and the preliminary combined H1 and ZEUS fit (right) at $Q^{2}=10 \mathrm{GeV}^{2}$. Gluon and sea quark distributions are scaled down by a factor of 20 . The bands denote the experimental, model, and parametrisation uncertainties from inner to outer band.

Compare to published ZEUS/H1 results which also used only HERA dat

Resolution of previous discrepancies, improvement in level of uncertainty

```
Q 2 ranges covered:
12-800 GeV }\mp@subsup{}{}{2}->\textrm{H}1\mathrm{ Prelim 08-042
5-800 GeV2 }->\mathrm{ H1 Prelim 09-044
12-90 GeV 2 }->\mathrm{ Phys.Lett.B.66:2008
12-150 GeV 2 }->\mathrm{ Eur.Phys.J.C64:561-
587,2009
```

1.5-45 GeV² \rightarrow Eur.Phys.J.C71:1579,2011

