

ZEUS

High-Q² NC and CC Cross sections at HERA and Proton Structure

Ritu Aggarwal PU, India / MPI, Munich (On the behalf of H1 & ZEUS Collaborations)

HERA at DESY

HERA-II

- **e** beam : 27.5 GeV
- *⊌ p* beam : 920 GeV
- Centre of mass E : 318 GeV
- H1 & Zeus : General Purpose Detectors
 - HERA-II upgrade: Increased Luminosity Polarized Lepton Beam

(Mean Polaraization, $P_e \sim 30-40\%$)

Deep Inelastic Scattering (DIS)

(Charged Current & Neutral Current)

Neutral Current (NC) γ, Z exchange : ep ---> eX

> **Charged Current (CC)** W± exchange : ep ---->vX

DIS Scaling Variables :-

Q²: Four momentum transfer (probing power) $Q^2 = -(k - k')^2 = -q^2$ - x : momentum fraction of struck quark) $x = Q^2 / 2 k.p$ y : inelasticity y = p.q/p.ks : centre of mass energy $s = (p+k)^2$ related as

$$Q^2 = s . x. y$$

Neutral Current Cross-sections

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2 \pi \alpha^2}{xQ^4} \left[Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L \right]$$

$$\stackrel{\sim}{\longrightarrow} \tilde{F}_2 = F_2^{\gamma} + \kappa (-v_e \pm P_e a_e) F_2^{\gamma Z} + \kappa^2 (v_e^2 + a_e^2 \pm P_e v_e a_e) F_2^{Z})$$

$$\stackrel{\sim}{\longrightarrow} x \tilde{F}_3 = \kappa (-a_e \mp P_e v_e) x F_3^{\gamma Z} + \kappa^2 (2v_e a_e \pm P_e (v_e^2 + a_e^2)) x F_3^{Z})$$

where

$$\{F_{2}^{\gamma}, F_{2}^{\gamma Z}, F_{2}^{Z}\} = \sum_{q} \{e_{q}^{2}, 2e_{q}v_{q}, v_{q}^{2} + a_{q}^{2}\}x(q + \overline{q})$$
$$\{xF_{3}^{\gamma Z}, xF_{3}^{Z}\}^{q} = \sum_{q} \{e_{q}a_{q}, v_{q}a_{q}\}x(q - \overline{q})$$

- ★ Dependence on P_e allows to study Assymmetry directly (A)
 ★ e+p & e-p xsec difference allows to extract xF₃
- ★ NC xsec linked to all quarks

New Trends in HERA Physics 2011, Ringberg

26.9.2011

Charged Current Cross-sections

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} = (1 \pm P_e) \frac{G_F}{4\pi x} (\frac{M_W^2}{M_W^2 + Q^2})^2 \widetilde{\sigma}_{CC}^{e^{\pm} p}$$

$$\tilde{\sigma}_{CC}^{e^+p} = x \left[\left(\overline{u} + \overline{c} \right) + \left(1 - y \right)^2 (d + s) \right]$$
$$\tilde{\sigma}_{CC}^{e^-p} = x \left[\left(u + c \right) + \left(1 - y \right)^2 (\overline{d} + \overline{s}) \right]$$

 ★ W bosons interact with (right) left handed (anti-) particles only
 ★ CC xsec depends on P_e

★ CC xsec linked to valence quarks directly

HERA-1

★ 1992-2000 efficiency runs
★e+p (~100 pb⁻¹) & e-p (15 pb⁻¹) data analysed by each experiment
★6.10⁻⁷ - x - 0.65
★0.045 - Q2 - 30000
★0.005 - y - 0.95

★Low Q2 data : sea & glouns ★High Q2 : valence quarks

H1 & Zeus combination : More precise

Low – Q² : P.Kaur Slides

HERAPDF1.0

More on HERAPDF's K.Lipka slides

★ Cobination data : less uncertainities

HERA-II

ZEUS e+p NC high-Q2 data II not included here New Trends in HERA Physics 2011, Ringberg

HERA-II High-Q2 data in hand

H1-prelim-10-141 & ZEUS-prel-10-017

CC data sensitive to the valence quarks directly

New Trends in HERA Physics 2011, Ringberg

26.9.2011

July 2010 : HERAPDF1.5

High -Q² CC & NC data

- Reduced Parametrisation uncertainties (whole of HERA I and HERA II high Q² data included in the fit)
 CC xsecs is a powerful probe to the flavor specific Parton Distribution
 - Functions (PDFs)
- ★ NC xsecs are sensitive to all flavors

Not included: * Zeus e+p (135.5 pb⁻¹) NC Prelimimary ZEUS-prel-11-003

ZEUS-prel-11-003 $d\sigma/dx \& d\sigma/dy$ for - & + P

New Trends in HERA Physics 2011, Ringberg

HERA @ **Electroweak** scale

NC & CC cross sections

NC & CC Cross sections Comparable at Q² ~ m_z²,m_w²

$$\begin{array}{l} \text{NC:} \ \displaystyle \frac{d\sigma}{dQ^2} \sim \displaystyle \frac{1}{Q^4} \\ \\ \hline \text{CC:} \ \displaystyle \frac{d\sigma}{dQ^2} \sim \displaystyle \frac{1}{(Q^2+M_W^2)^2} \end{array}$$

Electroweak Unification

New Trends in HERA Physics 2011, Ringberg

CC Cross-Sections

26.9.2011

Polarized lepton beam

★ Effect of Polarization P_e clearly seen
 ★ SM describes data well

$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} \propto (1 \pm P_e) [\dots]$

Charged Current Cross-Sections

Dependance on P

- ★ Total CC xsec as a function of P
- ★ Previous e⁻p and e⁺p results also shown
- Excellent test of EW theory SM describes data well
- ★ CC e⁺p total Cross section consistent with 0 for P_e = -1
 ★ For CC e⁻p, consistent with 0 for P_a = 1

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} \propto (1 \pm P_e) [\dots]$$

New Trends in HERA Physics 2011, Ringberg

NC ZEUS Cross-Sections

Polarised lepton beam

Assymetry : A+

★ H1prelim-09-042

Difference in LH & RH lepton beam Cross sections

$$A \pm = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)} \simeq \mp \kappa a_e \frac{F_2^{\gamma Z}}{F_2}$$

A⁺ measurement

 A^+ sensitive to $a_e v_e$

A⁺ increases at high-Q²

New Trends in HERA Physics 2011, Ringberg

Coupling constants

All H1 DIS NC & CC data (including polarized beams)

(including polarized beams) ★ 68 % CL on Ew neutral coupling of u (d) on Z ★Compared to SM values ★ & to LEP & CDF results

ZEUS DIS NC & CC data e-p data (both polarizations) \sim 120 pb⁻¹

New Trends in HERA Physics 2011, Ringberg

xF3 extraction - I

★ e⁺p NC high-Q² 135.5 pb⁻¹
 ★ e⁻p NC high-Q² 169.9 pb⁻¹

$$\widetilde{\sigma}^{e^-p} - \widetilde{\sigma}^{e^+p} = \frac{Y_-}{Y_+} 2x \widetilde{F}_3$$

Difference in Cross sections visible at high-Q2

New Trends in HERA Physics 2011, Ringberg

xF3 extraction - II

 (Difference in e+p and e-p Cross sections gives a direct handle on xF3 Structure Function)

$$\widetilde{\sigma}^{e^-p} - \widetilde{\sigma}^{e^+p} = \frac{Y_-}{Y_+} 2x \widetilde{F}_3$$

Difference in Cross sections visible at high-Q2

New Trends in HERA Physics 2011, Ringberg

High-Q² HERA II Analysis A short database

HERA-II

HERA II (~200 pb⁻¹ e-p & ~150 pb⁻¹) data analysed

H1 results :

- NC e-p & e+p : H1prelim-09-042
- CC e-p & e+p : H1prelim-09-043

ZEUS results

NC e-p : EPJC-62-2009-625

CC e-p : EPJC-61-2009-223

CC e+p : EPJC-70-2010-953

NC e+p : ZEUS-prel-11-003

H1 & ZEUS combination : H1prelim-10-141 &

ZEUS-prel-10-017

HERAPDF1.5 & High-Q2 data

No deviations from SM seen

Motivation

- Proton PDFs poorly determined at high-x
- Variations larger than uncertainty estimates
- Is measurement from HERA to constraint PDFs at high-x possible?
- Large x Physics relevant to understand LHC physics (eg. For high mass searches at the LHC)

New Trends in HERA Physics 2011, Ringberg

26.9.2011

Event Topology

Event with no jet

 \rightarrow Jet definition : E_{T} of jet > 10 GeV

& θ_{iet} > 0.11 rad

x reconstructed using jet information for x < xlimit</p>

- No jet in final State
- x can not be reconstructed but these events have x > xlimit
- Constraint high-x by integration in x.

26.9.2011

HERA – I Cross Sections

Zeus 17 pb-1 (HERA I)
 Solid Circles : x from jets
 Open Circles : no jet reconstructed
 Integrated Cross secion in x calculated
 compared to CTEQ6M

Published 2006

26.9.2011

HERA 11 Reduced Cross sections

Completes high – x HERA II analysis

26.9.2011

HERA I- II Cross Sections

e-p HERA-I : 16.7 pb⁻¹
 e-p HERA – II : 187
 pb⁻¹
 ~ 10 times LUMI

🔶 More bins

dd bins span higher-x

Contact Interactions : eqeq (DESY-II-114)

Phys. Lett. B 7/11

 VV compositeness scale model
 Both signs of chiral cofficients considered

More on limits : See backup COTTICI New Trends in HERA Physics 2011, Ringberg

ZEUS ZEUS (prel.) e⁺p 0.25 fb⁻¹ $\Lambda^- = 8.0 \text{ TeV}$ $\Lambda^{+} = 8.9 \text{ TeV}$ 0.9 Contact Interactions Limits (prel.) 10³ 10⁴ Q^2 (GeV²) ZEUS e⁻p 0.19 fb⁻¹ AA $\Lambda^{-} = 7.0 \text{ TeV}$ $\Lambda^{+} = 6.7 \text{ TeV}$ 0.9 Contact Interactions Limits (prel.) 10³ 10⁴ Q^2 (GeV²)

ZEUS-prel-09-013

Heavy Leptoquarks (DESY-II-123)

More on limits & ZEUS results see backup

New Trends in HERA Physics 2011, Ringberg

Phys. Lett. B 7/11

NC HERA (H1) :
 CC HERA (H1) :
 No deviations from SM
 ~450 pb⁻¹ data used

- Limits placed for $\lambda = 0.3$, $M_{lq} \le 800 \text{ GeV}$ discarded for 1st generation LQ

Quark radius

→ R_q < 0.65 . 10 ⁻¹⁸ m

$$f(Q^2) = 1 - \frac{\langle R^2 \rangle}{6} Q^2$$

Destructive for
SM expectations

Summary

HERA-II

- HERA II Inclusive high -Q2 results almost finished (some of the data sets still preliminary)
 HERA II ZEUS high-x analysis close to complete
 - (NC e-p & e+p high-x results almost final)
- EW theory tested well in both NC and CC sectors
- Results will constrain the uncertainities in the Unpolarised NC cross sections to be included NC high-x Cross sections will help constrain the PDFs at high-x.

New : high-Q2 Neutral Current Cross-Sections 26.9.2011

Control Plots

* e⁺p NC 135.5 pb⁻¹
* ZEUS-prel-11-003
* Pe = +32%
L = 78.8%
*Pe = -36%
L = 56.7%

★ Kinematic Range
 Q2 > 185 GeV2
 y < 0.9
 ★Data well described

New : high-x Neutral Current Cross-Sections

Control Plots I

New Trends in HERA Physics 2011, Ringberg

Control Plots II

★ e⁺p NC 142 pb⁻¹
 ★ ZEUS-prel-11-004

★kinematic Range
 Q2 > 450 GeV2
 ★Data well described

New Trends in HERA Physics 2011, Ringberg

H1 & Zeus at HERA

26.9.2011

26.9.2011

DIS & Proton Structure

HERAPDF1.5

Most precise Zeus e-p (135.5 pb-1) NC will help better contraints

Charged Current Cross-Sections

- Total CC xsec as a function of P
- ★ Previous e⁻p and e⁺p results also shown
- Excellent test of EW theory
- 🖈 SM describes data well
- ★ CC e⁺p total Cross section consistent with 0 for P_e = -1
- ***** For CC $e^{-}p$, consistent with 0 for $P_{e} = 1$

★ Limit placed on M_{WR}, consistent with other experiments M_{WR}>198 GeV at 95% CL

New Trends in HERA Physics 2011, Ringberg

Zeus-prel-11-003

🗢 e+p NC RH polarised e beam

Cross Sections

Solid Circles : x
 from jets
 Black Triangles : no
 jet reconstructed
 Integrated Cross
 secion in x calculated
 Compared to
 HERAPDF &
 CTEQ6D

New Trends in HERA Physics 2011, Ringberg

Comparison to theory

New Trends in HERA Physics 2011, Ringberg

Contact Interactions : eeqq (DESY-11-114)

H1 Search for General Compositeness Λ⁻ [TeV] ^⁺**[TeV]** LL 4.0 4.2 3.7 4.8 LR 3.8 4.8 RL 3.9 4.4 RR 5.6 vv 7.2 5.1 AA 4.4 3.6 3.8 VA 5.1 5.3 LL+RR 4.8 5.4 LR+RL 6 2 0 2 6 4 4 Λ[±] [TeV]

 Full HERA for H1 taken
 Both signs of chiral cofficients considered
 Lower limits on compositeness scale for various chiral models with 95 % CL

New Trends in HERA Physics 2011, Ringberg

26.9.2011

Heavy Leptoquarks (ZEUS-prel-11-008)

More on limits see backup

Heavy Leptoquarks Limits (DESY-11-123)

NC HERA (H1) :
CC HERA (H1) :
No deviations from SM
~450 pb-1 data used

- Limits placed for $\lambda = 0.3$, M_{lq} <= 800 discarded for 1st generation LQ

New Trends in HERA Physics 2011, Ringberg

Binning Comparison

High-x dd bins
 High Q2 dd bins

 More bins at High Q2
 & x where PDFs are falling steeply

New Trends in HERA Physics 2011, Ringberg