

Proton structure measurements and PDFs at HERA

Katerina Lipka, DESY for H1 and ZEUS Collaborations

Ringberg workshop 2011

Scaling Violations at High Precision

JHEP 01 (2010) 109: combined H1 and ZEUS data from HERA I, L~115 pb⁻¹

H1 and ZEUS data averaged:

- global fit of 1402 measurements
- 110 sources of systematic errors
- account for systematic correlations (cross calibration of experiments)
- total uncertainty: 1-2%for $Q^2 < 500 \ GeV^2$
- covered kinematics: $10^{-7} < x < 0.65$ $0.05 < Q^2 < 30000 \text{ GeV}^2$ Only HERA I, not ultimate precision

Determination of Parton Density Functions

Structure function factorization: for an exchange-Boson $V(\gamma, Z, W^{\pm})$

$$F_2^V(x,Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

determined using measured cross sections calculable in pQCD

PDF

x-dependence of PDFs is not calculable in perturbative QCD:

- > parameterize at a starting scale $Q_0^2 : f(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$
- \triangleright evolve these PDFs using DGLAP equations to $Q^2 > Q^2_0$
- construct structure functions from PDFs and coefficient functions: predictions for every data point in (x, Q^2) – plane
- $\succ \chi^2$ fit to the experimental data

HERA Parton Density Functions

On the way to ultimate precision: combined HERA I + HERAII data

10 parameter fit, NLO DGLAP Heavy quarks: massive Variable Flavour Number Scheme Scales: $\mu_r = \mu_f = Q^2$ Experimentally very precise Parameterization at starting scale: $xg(x) = A_{a}x^{B_{g}}(1-x)^{C_{g}}$ $xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u}x^{2})$ $xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}}$ $x\overline{U}(x) = A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}}$ $x\overline{D}(x) = A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}$

HERA DIS Cross Sections vs HERAPDF

Improved precision at high Q^2 and high xQCD using HERAPDF describes HERA NC and CC data very well

HERAPDF: Fit Improvements

HERAPDF1.5f: 14-parameter fit gluon more flexible at low-x

Small difference in total uncertainty

→ swap between parametrisation and experimental uncertainties

HERAPDF NNLO

HERAPDF1.5NNLO is based on HERAI + II inclusive DIS data

uses more flexible parametrisation

HERA PDF15NLO and NNLO recommended to be used for predictions

PDFs From HERA to Tevatron and the LHC

PDFs obtained from data of fixed target, HERA, Tevatron

HERA measurements:

covers most of the (x, Q^2) plane, best constrain at low, medium x

> From HERA to kinematics of Tevatron, LHC: evolution in Q^2 via DGLAP

HERAPDF and **Jets** at **Tevatron**

Prediction based on HERAPDF in agreement with Tevatron

W and Z Production at Tevatron

Prediction based on HERAPDF agrees very well with Tevatron data

W lepton asymmetry is sensitive to differences between u and d

$$A_W = \frac{W^+ - W^-}{W^+ + W^-} \approx \frac{u_v - d_v}{u_v + d_v + 2u_{sea}}$$

LHCb-CONF-2011-039 CMS-EWK-10-006 (arXiv:1103.3407)

Jet production at CMS (CERN-CMS-NOTE-2011-004)

HERAPDF describes the LHC data well (similar level of agreement as other PDFs)

HERAPDF describes the LHC data well (similar level of agreement as other PDFs)

Top quark at CMS: determination of m_t^{pole} and $m_t(m_t)$ from cross section

CMS-TOP-11-008

only experimental PDF error used

very good agreement with mstw08nnlo (within α_{s} uncertainty)

Benchmarking PDFs: LHC Cross Sections

Dominant uncertainty on HERAPDF : parameterization, model

Differences between the PDF groups:

- data used in the fit and estimation of uncertainties
- choice of α_s and running of strong coupling
- different treatment of heavy quarks

Learn more about α_s : PDF fits using HERA Jet Data

Inclusive DIS data: combined H1+ZEUS HERAI+HERAII

Jet data:

H1 high Q^2 , Eur. Phys. J. C**65** (2010) H1 low Q^2 , Eur. Phys. J. C**67** (2010)

ZEUS inclusive jets PLB**547** (2002) ZEUS inclusive+dijets Nucl. Phys. B**765** (2007)

➡ HERA results on Jets: talk by R. Kogler

PDF Fit:

- flexible parametrisation
- $\alpha_{s}(M_{Z})$ fixed

PDFs very similar to HERAPDF15f, no significant reduction of uncertainty

PDF fits using HERA Jet Data: Fixed α_s

Inclusion of jet data into the PDF fit using fixed α_s does not have large impact

PDF Fits with free α_s (Mz)

PDF Fits with free α_s (Mz)

Inclusion of jet data into the PDF fit decouples the gluon and αs (Mz)

 $\alpha s (Mz) = 0.1202 \pm 0.0013_{exp} \pm 0.0007_{model/param} \pm 0.0012_{had} + 0.0045_{scale}$

From including the Jet data in the PDF fit we do learn about αs (Mz)

 α s (Mz)= 0.1202 ± 0.0013_{exp} ± 0.0007_{model/param} ± 0.0012_{had}+0.0045_{scale}

From including the Jet data in the PDF fit we do learn about αs (Mz)

What do we learn from heavy flavour production?

Factorization:
$$F_2^V(x,Q^2) = \sum_{i=I,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

Factorization:
$$F_2^V(x, Q^2) = \sum_{i=1, \bar{q}, g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z}, Q^2, \mu_F, \mu_R, \alpha_S) \times f_i(z, \mu_F, \mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- *(b*-*)* quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

Factorization:
$$F_2^V(x, Q^2) = \sum_{i=1,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z}, Q^2, \mu_F, \mu_R, \alpha_S) \times f_i(z, \mu_F, \mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- *(b*-*)* quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

- *i* variable: Variable Flavour Number Scheme (VFNS)
- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{HO}^2$
- Generalized Mass VFNS: different implementations provided by PDF groups smooth matching with FFNS for $Q^2 \rightarrow m_{HQ}^2$ must be assured

Factorization:
$$F_2^V(x, Q^2) = \sum_{i=1, \bar{q}, g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z}, Q^2, \mu_F, \mu_R, \alpha_S) \times f_i(z, \mu_F, \mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

only light flavours in the proton: i = 3 (4)

c- (b-) quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

- *i* variable: Variable Flavour Number Scheme (VFNS)
- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{HO}^2$
- Generalized Mass VFNS: different implementations provided by PDF groups smooth matching with FFNS for $Q^2 \rightarrow m_{HQ}^2$ must be assured

QCD analysis of the proton structure: treatment of heavy quarks essential

Heavy Quark Mass Definition in PDFs

Usually HQ coefficient functions use a pole mass definition

BUT: pole mass defined for free quarks Corrections due to loop integrals receive large contributions ~ $O(\Lambda_{QCD})$

> large higher order corrections bad convergence of perturbative series

Another way of defining quark mass: via renormalization

q

Heavy Quark Mass Definition in PDFs

Usually HQ coefficient functions use a pole mass definition

BUT: pole mass defined for free quarks Corrections due to loop integrals receive large contributions ~ $O(\Lambda_{QCD})$

> large higher order corrections bad convergence of perturbative series

Another way of defining quark mass: via renormalization

q

running coupling

running mass

Heavy Quark Mass Meaning in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

ZMVFNS: m_{HQ} defines a threshold at which HQ appears as an active flavour

GMVFNS: m_{HQ} is also used as a parameter at which FFNS turns into VFNS

Heavy Quark Mass Values in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

	PDF group	m_c	m_b H	Q scheme
	MSTW	1.4	/ 4.75	GMVFNS
	CTEQ	1.3	/ 4.5	GMVFNS
	JR	1.3	/ 4.2	FFNS
	ABKM	1.5	/ 4.5	FFNS
	HERAPDF	1.4 ^{-0.05} +0.25	/ 4.75	GMVFNS
PDG values: 1 66+0 18 / 4 79				

PDF fits assume pole mass definition for heavy quarks Values of m_c as used by most PDF groups too low wrt. PDG

Heavy Quark Mass Values in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

	PDF group	m_c	m_b H	Q scheme
	MSTW	1.4	/ 4.75	GMVFNS
	CTEQ	1.3	/ 4.5	GMVFNS
	JR	1.3	/ 4.2	FFNS
	ABKM	1.5	/ 4.5	FFNS
	HERAPDF	1.4 ^{-0.05} +0.25	/ 4.75	GMVFNS
DC values $1.66 \pm 0.49 \pm 4.70$				

PDG values: 1.66±0.18 / 4.79

PDF fits assume pole mass definition for heavy quarks

Values of m_c as used by most PDF groups too low wrt. PDG

HQ treatment in PDF fits, meaning and values of HQ masses non trivial..

Heavy quark data can help!

Heavy Quark Production at HERA

Heavy quarks in ep scattering produced in boson-gluon fusion

➡ HERA results on charm and beauty: talk by O. Behnke

 \mathbf{M} HQ contributions to the proton structure function F_2 : (e.g. charm)

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L^{cc}(x,Q^2)$$

Direct test of HQ schemes in PDF fits

Charm at HERA: Test HQ Schemes in PDFs

Data help understanding differences in HQ schemes

Charm at HERA: Test Choice of m_c in PDF

PDFs obtained from inclusive data sensitive to the choice of m_c

Charm Data in the PDF Fit

Charm production probes gluon directly. Do charm data influence the gluon?

PDFs and PDF fit using charm data is sensitive to the value of m_c

Charm Mass as a Model Parameter in PDF

Study the sensitivity of the PDF fit to the value of m_c

PDF fit to inclusive DIS

Charm Mass as a Model Parameter in PDF

Study the sensitivity of the PDF fit to the value of m_c

PDF fit to inclusive DIS

PDF fit to inclusive DIS + charm data

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Value of m_c : how different for various HQ schemes in PDF Fits?

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Different HQ schemes prefer different optimal $\star m_c$

Value of m_c : how different for various HQ schemes in PDF Fits?

Test different HQ schemes (used by different PDF groups)

Different HQ schemes prefer different optimal* *m*_c parameter of a specific HQ scheme in PDF fits

What is the Meaning of m_c in PDF Fits?

Recent theory developments: (ABKM group, DESY, *arXiv:1011.5790*) HQ coefficient functions provided in $\overline{\text{MS}}$ scheme using running m_{HQ}

From including the charm data in the PDF fit we can learn about m_c (m_c)

HERAPDF1.7: DIS+ low energy+jets+charm

Including the jet and the charm data: decouple the gluon from α_{S} and m_{c}

10⁻⁴

10⁻³

10⁻²

10⁻¹

June 2011

HERAPDF Structure Function Working Group

 \mathbf{x}^{1}

Prediction of W[±] cross section @ LHC: dominant uncertainty due to PDF

 m_c variation in PDF: significant uncertainty on W@LHC in central region

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Larger $m_c \rightarrow$ more gluons, less charm \rightarrow more light quarks \rightarrow larger σ_W

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Several HQ schemes

 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction

Using different HQ schemes:

+ 7% uncertainty

Large uncertainty on σ_W prediction due to HQ treatment in PDFs

Charm at HERA and W/Z at LHC

Use the optimal m_c for HQ schemes in PDFs fixed by HERA charm data

★ Optimal m_c using F_2 + F_2^c

ZMVFNS not considered

Uncertainty on σ_W prediction due to HQ treatment in PDFs reduced to 1 %

Top quark at CMS: cross section @ approx. NNLO

Dominant uncertainty: variation of Q2min imposed on data used in the fit

top quark production at the LHC has potential to constrain the high-x gluon

- Understanding of the LHC data demands precise PDFs HERA DIS data provide highest precision
- Heavy quarks and strong coupling: quite some issue in QCD analyses HERA charm and jet data provide constraints in PDF fits
 - Example: PDF uncertainties on predictions for W and Z at the LHC
 - More to learn using the LHC data

PDFs from HERA to the LHC is a success Common effort of experiments and theory needed

Combination Procedure

Minimized value:

$$\chi^{2}(\vec{m},\vec{b}) = \sum_{i} \frac{\left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right)}{\left(\delta_{i,stat} \mu^{i}\right)^{2} + \left(\delta_{i,unc} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

 $\boldsymbol{\mu}^i$ measured value at point i

 δ_i statistical, uncorrelated systematic error

 γ_i^j – correlated systematic error

 b_i – shift of correlated systematic error sources

 m^i – true value (corresponds to min χ^2)

Measurements performed sometimes in slightly different range of (x, Q^2) swimming to the common (x, Q^2) grid via NLO QCD in massive scheme

HERAPDF1.5f:

$$\begin{aligned} xg(x) &= A_g x^{B_g} \cdot (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} \cdot (1-x)^{C_{u_v}} \cdot (1+D_{u_v} x + E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} \cdot (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} \cdot (1-x)^{C_{\bar{U}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} \cdot (1-x)^{C_{\bar{D}}} \end{aligned}$$

 A_g, A_{u_v}, A_{d_v} are constrained by the sum rules. $B_{\bar{U}} = B_{\bar{D}}$ $C'_g = 25, A_{\bar{U}} = A_{\bar{D}}(1 - f_s)$

HERAPDF1.5 (10 parameter fit) $A'_{g} = B'_{g} = 0, B_{d_{v}} = B_{u_{v}}$ $D_{u_{v}} = 0$

Scaling Violations at Highest Precision

JHEP 01 (2010) 109: combined H1 and ZEUS data from HERA I, L~115 pb⁻¹

HERA PDFs vs global QCD analysis

- much better precision in gluon and sea
- differences in valence

ep Scattering in Quark-Parton Picture

Think of scattering of longitudinal and transverse polarized photons: y (or $Y_{\pm}=1\pm(1-y)^2$) related to photon polarization

Kinematics:

 $x=-q^2/2p \cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p \cdot q / p \cdot k$ transferred γ energy fraction

ep Scattering in Quark-Parton Picture

Think of scattering of longitudinal and transverse polarized photons: y (or $Y_{\pm}=1\pm(1-y)^2$) related to photon polarization

 $x=-q^2/2p \cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p \cdot q / p \cdot k$ transferred γ energy fraction

helicity conservation $\Rightarrow \sigma_L = O$

Proton Structure Functions

Cross Section of ep scattering expressed via proton structure functions

 $\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1 + (1 - y)^2)F_2 - y^2F_L \pm xF_3 \Big]$ measured

Kinematics:

 $x=-q^2/2p\cdot q$ Bjorken scaling variable $Q^2 = -q^2$ photon virtuality $y=p\cdot q/p\cdot k$ transferred γ energy fraction

Proton Structure Functions

Cross Section of ep scattering expressed via proton structure functions

	Kinematics:
$x = -q^2/2p \cdot q$	Bjorken scaling variable
$Q^2 = -q^2$	photon virtuality
$y=p\cdot q/p\cdot k$	transferred γ energy fraction

$$\frac{d^2\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[(1 + (1 - y)^2)F_2 - y^2F_L \pm xF_3 \Big]$$

measured

Quark-Parton-Model:

$$F_L \sim \sigma_L = 0$$

$$F_2 = \sum_q x e_q^2 (q(x) + \overline{q}(x))$$

Parton Distribution Functions (PDFs): probability to find a q in a proton carrying x fraction of its momentum

Another way to access the gluon directly: \mathbf{F}_{L}

Remind of photon- scattering: $F_2 \sim (\sigma_T + \sigma_L), F_L \sim \sigma_L$

Angular momentum conservation: spin 1/2 quark absorbs spin-1 photon

quark helicity $\pm \frac{1}{2}$, $F_L = 0$

off-shell quarks may absorb longitudinal photons

QCD:
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) zg(z) \right]$$

quarks gluons
radiating a gluon splitting into quarks

Extraction of F_L

HERA PDF Fits at NNLO

First HERA PDF Fits at NNLO:

Ihapdf grids available https://www.desy.de/h1zeus/combined_results/ NNLO has impact on F_L at low Q^2

HQ Contribution to the Proton Structure

Can be determined experimentally: e.g. "charm structure function":

$$F_2^{cc} \propto \frac{Q^2 \times \alpha_s}{m_c^2} \int \frac{dx}{x} \mathscr{C}g(x_g, Q^2) \times C(...)$$

use and combine different charm tagging methods

measure cross sections of charm and beauty production in DIS:

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1+(1-y)}F_L^{cc}(x,Q^2)$$

- Direct test of different schemes of HQ treatment in PDF fits
- Can be included in the full QCD analysis of DIS cross sections additional constrain on the gluon density in the proton reduce parameterization uncertainty

PDFs From HERA to Tevatron and the LHC

Kinematics in pp collisions $\overbrace{E_1}^{x_1}$ $\overbrace{E_2}^{x_2}$ $\overbrace{E_2}^{x_2}$ Center-of-mass energy:

$$s = 4 \cdot E_1 \cdot E_2$$

2-parton interaction: $\hat{s} = x_1 \cdot x_2 \cdot s \ge M$ Energy scale M = Q $x_{1,2} = \frac{M}{\sqrt{s}} \cdot exp(\pm y)$

rapidity

HERAPDF vs Jets at TEVATRON

Predictions based on HERAPDF in agreement with TEVATRON data