Status of NNLO Calculations for DIS and Higgs Production

Sven-Olaf Moch

Sven-Olaf.Moch@desy.de

DESY, Zeuthen

- Ringberg Workshop New Trends in HERA Physics 2011, Sep 27, 2011, Ringberg -

Past and Present

- HERA: deep structure of proton at highest Q^2 and smallest x
- LHC: Higgs boson search at highest energies $\sqrt{S} = 7 \text{TeV}$

- Quantum Chromodynamics (QCD) ubiquitous at proton colliders
 - reliable understanding essential for precision and discovery physics

QCD factorization

- In the section $\hat{\sigma}_{ij \to X}$ calculable in perturbation theory
 - known to NLO, NNLO, \dots ($\mathcal{O}(\text{few}\%)$) theory uncertainty)
- Non-perturbative parameters: parton distribution functions f_i , strong coupling α_s , particle masses m_X
 - known from global fits to exp. data, lattice computations, ...

Why precision ?

ATLAS coll. ATLAS-CONF-2011-112 (right)

- Higgs sensitivity driven by large higher order corrections
- Measurement of Higgs properties (mass, couplings, ...) requires:
 - precise estimate of the cross-section
 - $LO \rightarrow NLO$: reliable information on cross section
 - NLO \rightarrow NNLO: improvement of theoretical uncertainities

What role for DIS ?

- Deep-inelastic scattering
 - constituent partons from proton interact at short distance
 - photon momentum $Q^2 = -q^2$, Bjorken's $x = Q^2/(2p \cdot q)$

$$\sigma_{\gamma p \to X} = \sum_{i} f_{i}(\mu^{2}) \otimes \hat{\sigma}_{\gamma i \to X} \left(\alpha_{s}(\mu^{2}), Q^{2}, \mu^{2}, m_{q}^{2} \right)$$

• Evolution equations for parton distributions f_i

$$\frac{d}{d\ln\mu^2} f_i(x,\mu^2) = \sum_k \left[P_{ik}(\alpha_s(\mu^2)) \otimes f_k(\mu^2) \right](x)$$

Perturbative stability of evolution

• Scale derivatives of quark and gluon distributions at $Q^2 \approx 30 \text{ GeV}^2$

Expansion very stable except for very small momenta $x \leq 10^{-4}$ S.M. Vermaseren, Vogt '04

• Singlet-quark distribution: $\dot{q}_{\rm s} \equiv d \ln q_{\rm s}/d \ln \mu_f^2$ renormalization scale μ_r de-

pendence at NLO and NNLO

Sven-Olaf Moch

• Gluon distribution: $\dot{g} \equiv d \ln q_{\rm s} / d \ln \mu_f^2$

renormalization scale μ_r dependence at NLO and NNLO

Status Quo for DIS

Light quarks

- Neglect "light quark" masses $m_u, m_d \ll \Lambda_{QCD}$ and $m_s < \Lambda_{QCD}$ in hard scattering process
 - scale-dependent u, d, s, g PDFs from mass singularities
- Structure functions at three loops (NNLO and N^3LO)
 - γ -exchange structure functions F_2, F_L S.M., Vermaseren, Vogt '05
 - charged-current structure function F_3 S.M., Vermaseren, Vogt '08
- Deep-inelastic jet production
 - $ep \rightarrow 1$ jet X inclusive production known to NLO [many people]

Structure function F_2 (non-singlet)

- Large-*x* convergence of perturbative series
 - approx. N³LO structure functions

- Potential for 'gold-plated' determination of α_s
 - theory uncertainty $\Delta_{
 m pert.} \alpha_s < 1\%$

At very large *x*: soft-gluon resummation S.M., Vermaseren, Vogt '05

Structure function F_2 (singlet)

- Perturbative expansion to N³LO of the quark and gluon contribution
- **Perturbative stability of** F_2

Longitudinal structure function F_L

Status Quo for DIS

Heavy quarks

- No mass singularities for $m_c, m_b, m_t \gg \Lambda_{QCD}$, no (evolving) PDFs
 - c and b PDFs for $Q \gg m_c, m_b$ generated perturbatively
 - matching of two distinct theories
 - $\longrightarrow n_f$ light flavors + heavy quark of mass m at low scales
 - $\longrightarrow n_f + 1$ light flavors at high scales

Heavy-quark production in DIS

NLO QCD corrections

- NLO for charm structure function
 - neutral current Laenen, Riemersma, Smith, van Neerven '93
 - Charged current Gottschalk '81; Glück, Kretzer, Reya '96

Threshold improvements beyond NLO

- Parton cross section close to threshold $s \simeq 4m^2$
 - Sudakov logarithms $\ln(\beta)$ with velocity of heavy quark $\beta = \sqrt{1 4m^2/s}$ at n^{th} -order: $\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$
- Resummation in Mellin space (renormalization group equation) predicts fixed orders in perturbation theory
 - approximate expressions to NNLO
 Laenen, S.M. '98; Alekhin, S.M. '08; Lo Presti, Kawamura, S.M., Vogt '10

Asymptotics beyond NLO

NNLO corrections at large $Q^2 \gg m^2$ Bierenbaum, Blümlein, Klein '09

Running quark masses in DIS

- Running quark masses in DIS
 - improved convergence
 - reduced scale dependence
 - Comparison with pole mass scheme

Running quark masses in DIS

0.6 F_{2}^{charm} (ABKM_3 NNLO) LO $Q^{2} = 10 \text{ GeV}^{2}, x = 10^{-3} \text{ NLO}$ $\mu^{2} = Q^{2} + 4 \text{ m}_{c}^{2} \text{ NNLO}_{approx}$ 0.4 0.3 0.2 0.1 1 1.5 2 running mass m_c(m_c) (GeV)

- Running mass
- Direct determination of $m_c(m_c)$ Alekhin, S.M. '10

NLO

 1.26 ± 0.09 (exp) \pm 0.11 (th) GeV

NNLO_{approx} (fit + PDG constraint) 1.18 \pm 0.09 (exp) \pm 0.03 (th) GeV

- PDG quotes running masses: $m_c(m_c) = 1.27^{+0.07}_{-0.11} \text{ GeV}$
- Implicit $\alpha_s(M_Z)$ dependence in $m_c(m_c)$ determination from QCD sum rules Dehnadi, Hoang, Mateu, Zebarjad '11

Higgs cross section

Cross section for Higgs production at the LHC

Dominant channels for Higgs boson production LHC Higgs XS WG '10

gg-fusion

Apparent convergence of perturbative expansion

- NNLO corrections still large
 Harlander, Kilgore '02; Anastasiou, Melnikov '02; Ravindran, Smith, van Neerven '03
- improvement through complete soft N³LO corrections S.M., Vogt '05 or NNLL resummtion Catani, de Florian, Grazzini, Nason '03, Ahrens et al. '10
- Perturbative stability under renormalization scale variation Status of NNLO Calcu Status of NNLO Calcu

PDF dependence of *gg*-fusion cross section at LHC

Alekhin, Blümlein, Jimenez-Delgado, S.M., E. Reya '10

- **PDF** uncertainties (inner error bars) at 1σ
- Scale uncertainty (outer error bars) in range $M/2 \le \mu_F = \mu_R \le 2M$
- PDF uncertainty estimates by LHC Higgs XS WG too optimistic

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

Signatures

- WW, ZZ fusion \longrightarrow Higgs is color singlet
 - two hard (forward) tagging jets (visible in detector)
 - no (or small) hadronic activity between tagging jets
 - color connection between forward jet and proton remnant
 - Higgs decay in the central rapidity region

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

NLO QCD radiative corrections

Vector-boson fusion

Second largest rate at LHC (WWH coupling)

 NLO QCD corrections factorize (color conservation eliminates *t*-channel gluon in squared ME)

Exact factorization

- Deep-inelastic scattering building block of cross section with structure functions F_1 , F_2 and F_3
- Exact factorization at NLO: so-called strucure function approach Han, Valencia, Willenbrock '92
- Structure function approach is NOT exact at NNLO in QCD
 - but can be still considered a good approximation, holds to $\mathcal{O}(1\%)$
 - NNLO QCD corrections to F_1 , F_2 and F_3 long known Kazakov, Kotikov '88; Zijlstra, van Neerven '92; S.M., Vermaseren '99

Cross section for VBF at LHC

VBF at **NNLO**

- QCD corrections at second order small
 - apparent convergence
- NNLO results very stable at 2% against QCD scales variation (uniformly over the full mass range)
- Significant reduction of theoretical uncertainty

Bolzoni, Maltoni, S.M., Zaro '11

Scale stability at NNLO

- VBF cross sections displays very good scale stability at NNLO over large range for $\mu_R = \mu_F$ preferred (minimal sensitivity)
- Scale choice $\mu_R = \mu_F \simeq Q$ preferred (minimal sensitivity)

PDF dependence of VBF cross section at LHC

- PDF uncertainty
 - moderate for small Higgs masses $\mathcal{O}(\pm 2\%)$
 - increasingly larger for heavy Higgs bosons up to $\mathcal{O}(\pm 10\%)$

gg fusion (fully exclusive)

- Bin-integrated Higgs rapidity distribution including decay $H \rightarrow \gamma \gamma$
 - QCD corrections up to NNLO Anastasiou, Melnikov, Petriello '05
 - fast parton level Monte Carlo HNNLO Catani, Grazzini '07

- Impact of kinematical cuts on higher order corrections (LHC $\sqrt{s} = 14$ TeV)
 - left: Higgs mass $M_h = 125$ GeV, no cuts on p_t of jets
 - right: Higgs mass $M_h = 165 \text{ GeV}$ and veto on jets with $p_t > 40 \text{ GeV}$ (k_t algorithm for jet reconstruction with jet size D = 0.4)

WH production (fully exclusive) Ferrara, Tramontana, Grazzini '11

Scale dependence at the 1% level both at NLO and NNLO

- Tevatron (left): lepton $p_t > 20$ GeV, |y| < 2 and $p_t^{miss} > 20$ GeV
 - require two jets with $p_t > 20$ GeV, |y| < 2 (k_t alg. with R = 0.4)
- LHC $\sqrt{s} = 14$ TeV (right): lepton $p_t > 30$ GeV, |y| < 2.5 and $p_t^{miss} > 30$ GeV; require $p_t^W > 200$ GeV; (cone alg. with R = 1.2)
 - one fat jet with $p_t > 200$ GeV (and $b\bar{b}$ -pair), |y| < 2.5; no other jet with $p_t > 20$ GeV and |y| < 5

Fully exclusive cross sections at NNLO

Higgs production

Method relies on colorless final state $F = H, W^{\pm}, HW^{\pm}, \gamma\gamma, ZZ, \dots$ Catani, Grazzini '07

 $ij \rightarrow F + X$, where $i, j = q, \bar{q}, g$

- ingredients:
 - two-loop amplitude for $ij \rightarrow F$
 - cross section for F+jets to NLO
- Alternative for colored final states: full fledged subtraction schemes
 - successfully applied to NNLO cross section for $e^+e^- \rightarrow 3$ jets Gehrmann, Gehrmann-De Ridder, Glover, Heinrich '07; Weinzierl '08
 - antenna subtraction scheme for DIS
 Daleo, Gehrmann-De Ridder, Gehrmann, Luisoni '09
- NNLO cross sections $pp \rightarrow 2$ jets, $ep \rightarrow 1$ jet +X: still work in progress

Conclusions

Higgs cross section

- Theory predictions for hard parton cross section under good control
 - greatly reduced scale dependence at higher orders and convergence of perturbation theory
 - fully exclusive cross sections for gg-fusion and WH available

Deep-inelastic scattering

- Theory predictions for hard scattering under even better good control
 - testing ground for theory developments (thanks to OPE)
- Precision determinations of $\alpha_s(M_Z)$

Phenomenology

- DIS structure functions will remain backbone of PDF determinations
- Carry loop technology from DIS over to LHC

9 ...

Extra Slides

Approximate coefficient functions at NNLO

Distance from threshold $\eta = s/(4m^2) - 1$

- Sudakov logarithms dominant for $\eta \ll 1$ now known to NNLL Lo Presti, Kawamura, S.M., Vogt '10
- Combine Sudakov logarithms with exact scale dependence at two loops $\longrightarrow NNLO_{approx}$

Convolution with gluon PDF

Recall QCD factorization

$$x^{-1}F_2^c(x,Q^2,m^2) = \frac{\alpha_s \, e_q^2}{\pi^2} \sum_{i=q,\bar{q},g} \int_0^{\eta_{max}} d\eta \, f_i\left(z(\eta),\mu^2\right) \, c_{i,k}\left(\eta,\xi,\mu^2\right)$$

• gluon PDF gives large weight to parton dynamics near threshold for $Q^2 \lesssim 10 - 30 \text{ GeV}^2$

