

RINGBERG WORKSHOP: New Trends in HERA Physics 2011, September 25 - 28, 2011

M.Kapishin, JINR

on behalf of the H1 and ZEUS Collaborations

- Selection of Diffraction at HERA
- H1 and ZEUS leading proton data
- LRG cross sections and DPDF fits
- F^D measurement
- Factorisation tests

Diffractive DIS at HERA

HERA: ~10% of low-x DIS events are diffractive with no color flow between hadron systems Y(p) and X

→Probe structure of color singlet exchange with virtual photon

Selection of diffraction at HERA

Large rapidity gap (LRG) between leading proton p and X

- high statistics, data integrated over |t|<1GeV²
- p-dissociation contribution
- Iimited by systematic uncertainties related to missing proton
- LRG and FPS methods have different systematic uncertainties

Proton Spectrometers (PS)

free of p-dissociation background
 x_{IP} and t-measurements

 \Box access to high x_{IP} range (IP+IR)

□ low geometrical acceptance HERA-2:

- ➢ H1 FPS detector upgrade
- ➔ 20 times higher statistics than collected at HERA-1
- H1 VFPS has high acceptance

у

Inclusive Diffraction at HERA

EPJ C71 (2011) 1578

Diffractive Reduced Cross Section

$$\sigma_r^{D(3)} = \int \sigma_r^{D(4)} dt$$

 \rightarrow integrate over |t| < 1 GeV² to compare PS results with LRG and diffractive PDF predictions

- F₂ directly related to quark density in proton
- dF₂/dlnQ² (scaling violations) sensitive to gluon density
- F_L only non-zero in higher order QCD – independent access to gluon density

M.Kapishin

Factorisation in Diffractive DIS

QCD hard scattering collinear factorisation:

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_{i}} f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$$

 $\sigma_{D}^{\gamma^{*i}}$ universal hard scattering cross section (same as in inclusive DIS)

 f_i^D - Diffractive Parton Distribution Function \rightarrow obey DGLAP, universal for diffractive *ep* DIS (inclusive, Dijets, Charm)

□ Extract DPDFs from QCD fit to inclusive diffractive DIS

□ Test DPDFs in diffractive Final States (Boson Gluon Fusion)

M.Kapishin

Inclusive Diffraction at HERA

Factorisation in Diffractive DIS

Assumption of proton vertex factorisation for leading *IP* and subleading *IR* exchanges \rightarrow hard scattering is independent of x_{IP} and t

$$F_2^{D(4)}(\beta, Q^2, x_{IP}, t) = f_{IP}(x_{IP}, t) \cdot F_2^{IP}(\beta, Q^2) + n_{IR} \cdot f_{IR}(x_{IP}, t) \cdot F_2^{IR}(\beta, Q^2)$$

 x_{IP} and t dependences are described by Regge motivated *IP* and *IR* fluxes:

$$f_{IP}(x_{IP}, t) = \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}} \qquad \alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t$$

- Dominance of *IP* trajectory with α_{IP} >1 at x_{IP} <0.01 and contribution of sub-leading *IR* trajectory with α_{IR} <1 at higher x_{IP}
- Shrinkage of exp t-slope with ln(1/x_{IP}) →
 - → Perform 'Regge' fits to diffractive data to extract parameters of *IP* flux M.Kapishin

$$\frac{d\sigma}{dt} \sim \exp B|t|$$
$$B = B_{IP} + 2\alpha'_{IP} \ln(1/x_{IP})$$

ZEUS LPS: $x_{IP}\sigma_r^{D(4)}$

t-slope as a function of Q^2 , β , M_x , x_{IP}

H1 and ZEUS: *t*-slope does not change with β , M_x or Q² at fixed x_{IP} → data consistent with proton vertex factorisation

طلله

β**=0.0018**

5.1 GeV² 8.8 GeV²

15.3 GeV²

26.5 GeV²

46 GeV²

 $Q^2 = 80 \text{ GeV}^2$

10⁻²

10⁻¹

B (GeV⁻²)

5

0

5

0

5

0

5

0

7EUS

→ no strong dependence of $\alpha_{IP}(0)$, α'_{IP} , B_{IP} on Q^2

➔ H1 and ZEUS results are consistent with proton vertex factorisation within uncertainties

Inclusive Diffraction at HERA

Proton Spectrometer data in 0.09<|t|<0.55GeV²

Q²-dependence in (β, x_{IP}) bins

• H1 FPS norm. uncertainty 4.5%, ZEUS LPS norm. uncertainty 7%

H1 / ZEUS: = 0.91 +/- 0.01(stat.) +/- 0.03(syst.) +/- 0.08(norm.)

→ Reasonable agreement of H1 FPS HERA-2 and ZEUS LPS data in shape & normalisation

→ Combine H1 and ZEUS cross sections to extend phase space and reduce uncertainties

σ^{rD(3)}: H1 FPS vs ZEUS LPS

First combination of H1 and ZEUS diffractive data

- →Combined results from proton spectrometers
- →Consistency between data sets
- → Combination method uses iterative χ^2 minimization and include full error correlations [A.Glazov]

➔ Two experiments calibrate each other resulting in reduction of systematic uncertainties

M.Kapishin

A detailed look to the combined data

→ combined data have ~20% smaller uncertainties with respect to H1 data

Inclusive Diffraction at HERA

$\sigma_r^{D(3)}$: VFPS vs FPS vs LRG

H1 VFPS has high acceptance in range 0.009<x_{IP}<0.026, |t|<0.5 GeV²

→ allows a high precision measurement over this x_{IP} range

 \rightarrow VFPS t-slope and $\sigma_r^{D(4)}$ measurements are on the way

 $\sigma_r^{D(3)}$ for

|t|<1 GeV²

$\sigma_r^{D(3)}$: VFPS vs FPS vs LRG

$$\frac{\text{VFPS}}{\text{FPS}} = 0.96 \pm 0.02 (\text{stat.}) \pm 0.11 (\text{syst.}) \pm 0.08 (\text{norm.})$$

1

10

10

M.Kapishin

β=0.8 (I=0)

10²

 Q^2 (GeV²)

° °

10

→ combined 370 pb⁻¹ of H1 LRG (HERA-1 and HERA-2) and 62 pb⁻¹ of ZEUS LRG (HERA-1)

→ data are in general agreement, normalization difference of 13% is within quoted uncertainties

 → detailed quantitative comparison shows differences at low and high β
 Inclusive Diffraction at HERA

Diffractive PDFs: H1 vs ZEUS

- Fit β and Q² dependences at fixed x_{IP}

- Parameterize quark singlet and gluon PDFs at starting scale Q_0 and evolve with Q^2 using NLO DGLAP
- Proton vertex factorisation assumption to fit data from different x_{IP} with complementary β ,Q² coverage

• Inclusive diffractive DIS cross sections constrain quark singlet and gluon (via scaling violations); Dijet DIS cross sections constrain high z gluon

Diffractive PDFs: H1 vs ZEUS

→H1 DPDF Fit B and ZEUS DPDF Fit SJ predict somewhat different behavior at low Q²

➔ fits reflect difference in normalization of H1 and ZEUS LRG data

→ need to understand
 differences in H1 and ZEUS
 LRG data sets to combine
 them and perform a QCD fit

→ most of H1 LRG data (1999-2000 HERA-1 and HERA-2) are still preliminary

M.Kapishin

Inclusive Diffraction at HERA

Central Jets in DDIS with tagged proton

FPS: x_{IP} <0.1, p_{T1} >5GeV, p_{T1} >4GeV, -1< η_{Iab} <2.5

VFPS: 0.009<x_{IP}<0.024, p*_{T1}>5.5GeV, p*_{T1}>4GeV, -3<η*<0

→NLO predictions based on DPDFs H1 Jets an H1 Fit B describe central dijet production in DIS with tagged leading proton

Inclusive Diffraction at HERA

Forward Jets in DDIS with tagged proton

New H1 analysis of Dijet production in DIS with leading proton tagged in FPS:

Forward jet: $p_T^{>4.5GeV}$, $1 < \eta_{fwd} < 2.8$ Central jet: : $p_T^{>3.5GeV}$, $-1 < \eta_{cen} < \eta_{fwd}$

 \rightarrow extended x_{IP} and η range compared to LRG dijet DIS data

 \rightarrow dijet selection with DGLAP p_t ordering broken

no evidence for configurations beyond DGLAP & DPDF predictions

M.Kapishin

Linear fits to extract F_L^D

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + y^2/2)} F_L^{D(4)}$$

→ measure σ_r^{D} at fixed Q²,x_{IP},β, but different y using LRG data at different proton beam energies

→ perform linear fits to extract F_L^D

➔ analysis published for full range Q²>2.5 GeV²

F₂^D and F_L^D structure functions

 $\mathsf{R} = \sigma_{\mathsf{L}} / \sigma_{\mathsf{T}} \rightarrow \mathsf{F}_{\mathsf{L}}{}^{\mathsf{D}} / (\mathsf{F}_{2}{}^{\mathsf{D}}\text{-}\mathsf{F}_{\mathsf{L}}{}^{\mathsf{D}})$

- $F_2{}^D$ and $F_L{}^D$ extracted in bins of Q², x_{IP} and β
- → F_2^D and F_L^D data agree with H1 DPDF Fits
- Ratio of R^D to R(incl DIS) → longitudinal component is larger in diffraction

Test of Factorisation: Dijet Photo-production

(a)

M.Kapishin

x₇ < **1**

□ Factorisation in Dijet PhP expected to be valid in direct photo-production but broken in resolved photo-production (secondary re-scattering, multi-pomeron exchanges)

Inclusive Diffraction at HERA

p

Diffractive Dijet Photo-production

Gap survival probability:

- ZEUS (E_T>7.5 GeV) : no evidence for gap distraction
- H1 (E_T>5 GeV): survival probability < 1 at 2σ,
 → QCD factorisation breaking

 σ (H1 data) / σ (NLO) = 0.58 ± 0.12 (exp.) ± 0.14 (scale) ± 0.09 (DPDF)

- gap survival has little dependence on x_{γ}
- hint of dependence on jet E_{T}

Summary

- HERA continue to provide unique diffractive DIS data sensitive to structure of color singlet exchange.
- Agreement in detail between different analysis methods
- Proton vertex factorisation is a good model for diffractive DIS at HERA
- First combination of H1 and ZEUS diffractive data with tagged proton give consistent results
- High statistics H1 and ZEUS LRG data are in general agreement but require detailed combination
- Diffractive PDFs are constrained in QCD fits and tested
- \succ F^D structure function is measured by H1
- H1 and ZEUS results for gap survival in diffractive dijet photo-production are not conclusive

Regge fit

Assume proton vertex factorisation for IP and IR

$$F_2^{D(4)}(\beta, Q^2, x_{IP}, t) = f_{IP}(x_{IP}, t) \cdot F_2^{IP}(\beta, Q^2) + n_{IR} \cdot f_{IR}(x_{IP}, t) \cdot F_2^{IR}(\beta, Q^2)$$

• Parameterization of x_{IP} and *t* dependences for *IP* and *IR*:

$$f_{IP}(x_{IP},t) = \frac{e^{D_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}} \qquad \qquad \frac{d\sigma}{dt} \sim \exp B|t|$$
$$\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t \qquad \qquad B = B_{IP} + 2\alpha'_{IP}\ln(1/x_{IP})$$

• Fixed parameters for *IR* (as in H1 DPDF Fits): $\alpha_{IR}(0)=0.5$, $\alpha_{IR}=0.3 \text{ GeV}^{-2}$, $B_{IR}=1.6 \text{ GeV}^{-2}$, $F_2^{IR}(\beta, Q^2) - \pi$ structure function, F_L^D contribution corrected using H1 2006 DPDF fit B

• Free parameters: $\alpha_{IP}(0)$, α_{IP} , B_{IP} , n_{IR} and *IP* normalization $F_2^{IP}(\beta, Q^2)$ in every (β, Q^2) bin

Results of Regge fits

New H1 FPS

$$\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t$$

New H1 FPS
HERA-2 result: $\alpha_{IP}(0) = 1.10$ 0.02 (exp.)0.03 (model) $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t$ $\alpha_{IP} = 0.04$ 0.02 (exp.) $0.08 (model) GeV^{-2}$ $B = B_{IP} + 2\alpha'_{IP} \ln(1/x_{IP})$ $B_{IP} = 5.73$ 0.25 (exp.) $0.80 (model) GeV^{-2}$

→ $\alpha_{IP}(0) \simeq \alpha_{IP}$ (soft)~1.08 → $\alpha'_{IP} \simeq 0$ → no "shrinkage" (α'_{IP} (soft)~0.25 GeV⁻²) → B'_{IP} consistent with hard process

Compare with published HERA results:

H1 FPS HERA-1 parameterization: ZEUS LPS Regge fit: $\alpha_{IP}(0) = 1.114 \pm 0.022(\text{exp.}) \pm_{0.020}^{0.040} (\text{model})$ $\alpha_{IP}(0) = 1.11 \pm 0.02(\text{stat.}) \pm_{0.02}^{0.01} (\text{syst.}) \pm 0.02(\text{model})$ $\alpha'_{IP} = 0.06^{+0.19}_{-0.06} \text{ GeV}^{-2}$ $\alpha'_{IP} = -0.01 \pm 0.06 (\text{stat.}) \pm \frac{0.04}{0.08} (\text{syst.}) \pm 0.04 (\text{model}) \text{ GeV}^{-2}$ $B_{IP} = 5.5^{-2,0}_{\pm 0.7} \text{ GeV}^{-2}$ $B_{IP} = 7.1 \pm 0.7 (\text{stat.}) \pm_{0.7}^{1.4} (\text{syst.}) \text{ GeV}^{-2}$

M.Kapishin

Ratio $\sigma_r^{D(3)}/\sigma_r^{incl}$: Q² dependence

Q²-dependence in (x_{IP},β) bins $M_x>2$ GeV, |t|<1GeV²

Actio is flat or weakly rises with Q² except at highest β

→ similar shape of diffractive and inclusive quark PDF in proton at low $x=x_{IP}\beta$

→ extract InQ² derivative sensitive to gluon PDF

Ratio $\sigma_r^{D(3)}/\sigma_r^{incl}$: InQ² derivative

• Slope $D: (1-\beta)x_{IP}\sigma_r^D / \sigma_r^{incl} = A + D \ln Q^2 \rightarrow \ln Q^2$ -dependence in

selected (x_{IP},β) bins

- InQ² slope is consistent with zero within 3σ of exp. uncertainties
- →(gluon/quark)^{diff} ~ (gluon/quark)^{incl} in proton at low $x=x_{IP}\beta$

 weak decrease of lnQ² slope with β reproduced by **DPDF / PDF predictions**