The Color Dipole Picture of low-x DIS

Dieter Schildknecht

Universität Bielefeld & Max Planck Institut für Physik, München

Ringberg Workshop on New Trends in HERA Physics, September 25 – 28, 2011

1. Introduction

1960's Vector Meson Dominance

J.J. Sakurai (1960, ...)

Shadowing in γA interactions

Leo Stodolsky (1967)

1969 DIS SLAC-MIT Collaboration

Bjorken scaling, parton model

Volume 40B, number 1	PHYSICS LETTERS	12 June 19
G AND INFI	ENERALIZED VECTOR DOMINANCE	DINC *
AND INEI	LI SAVUDAL and D. SCHILDWIFCHT**	RING +
	J.J. SAKURAI and D. SCHILDKNECHI **	
	Los Angeles, USA	
	Received 30 March 1972	
We propose a model of the photon to higher-mass ve essentially no adjustable par SLAC-MIT data in the diffrac	inelastic electron-proton scattering which takes into acc ctor states. Both the virtual photon-proton cross section ameters) and the q^2 dependence of R are in exceedingly ction region.	count the coupling of $n \sigma_{\rm T}$ (predicted with good agreement with the

 $f' m p^{\circ}, \omega, \phi + f' m massive continuum$

(1972)

1989 Shadowing EMC Collaboration

D. Schildknecht (1973) C. Bilchak and D. Schildknecht (1989)

1994 HERA

DIS for $x_{bj} \ll 0.1$, High-mass diffractive production

("rap-gap" events) at HERA

Modern picture of low-x DIS:

i) $q\bar{q}$ internal structure

Nikolaev, Zakharov (1991)

ii) $q\bar{q}$ -dipole interaction

Low (1975) Nussinov (1975)

2. The CDP: Model-independent Results.

The longitudinal and the transverse photoabsorption cross section

$${
m A}) \qquad \sigma_{\gamma^*_{L,T}}(W^2,Q^2) = \int dz \int d^2ec{r}_\perp |\psi_{L,T}(ec{r}_\perp,z(1-z),Q^2)|^2 ~~\sigma_{(qar{q})p}(ec{r}_\perp,z(1-z),W^2)$$

Remarks: i) $|\psi_{L,T}(\vec{r}_{\perp}, z(1-z), Q^2)|$: Probability for $\gamma^*_{L,T} \to q\bar{q}$ fluctuation ii) $\sigma_{(q\bar{q})p}(\vec{r}_{\perp}, z(1-z), W^2)$: $(q\bar{q})p$ cross section dependent on W^2 (not on $x \equiv \frac{Q^2}{W^2}$)

Lifetime of $q\bar{q}$ fluctuation:

$$rac{1}{\Delta E} = rac{2
u}{Q^2 + M_{qar q}^2} = rac{1}{x + rac{M_{qar q}}{W^2}} rac{1}{M_p} \gg rac{1}{M_p}, \qquad rac{Q^2 \equiv -q^2 \ge 0}{x < 0.1}$$

B) Gauge-invariant two-gluon coupling:

$$egin{aligned} &\sigma_{(qar q)p}(ec r_ot, oldsymbol{z}(1-oldsymbol{z}), oldsymbol{W}^2) \, = \, \int d^2ec l_ot ilde \sigma(ec l_ot^2, oldsymbol{z}(1-oldsymbol{z}), oldsymbol{W}^2) \left(1-e^{-i \, ec l_ot \cdot \cdot ec r_ot}
ight) \ &\cong \, rac{\pi}{4}ec r_ot^2 \int dec l_ot^2 ec l_ot^2 ec \sigma(ec l_ot^2, oldsymbol{z}(1-oldsymbol{z}), oldsymbol{W}^2). \end{aligned}$$

Nikolaev, Zakharov (1991)

"color transparency" for

$$ec{r}_{\perp}^{\;\;2}ec{l}_{\perp}^{\;2} < ec{r}_{\perp}^{\;\;2}ec{l}_{\perp}^{\;\;2}_{\;\;Max}(W^2) < 1$$

 $\sigma_{\gamma^*_{L,T} p}(W^2,Q^2)$ for large Q^2

$$ert \psi_{\mathrm{L,T}}(\mathrm{r}_{\perp},\mathrm{z}(1-\mathrm{z}),\mathrm{Q}^2) ert^2 \sim \mathrm{K}^2_{0,1}(\underbrace{r_{\perp}\sqrt{z(1-z)}\sqrt{Q^2}}_{\equiv \mathrm{r}'_{\perp}\mathrm{Q}}) \sim rac{1}{\mathrm{r}'_{\perp}\mathrm{Q}}\mathrm{e}^{-2\mathrm{r}'_{\perp}\mathrm{Q}} \quad ext{for} \quad \mathrm{r}'_{\perp}\mathrm{Q} \gg 1.$$

Dominant contribution from $r_{\perp}^{\prime 2}Q^2 < 1$.

For
$$l_{\perp Max}^{\prime 2}(W^2) < Q^2$$
,
 $r_{\perp}^{\prime 2} l_{\perp Max}^{\prime 2}(W^2) = r_{\perp}^2 l_{\perp Max}^2(W^2) < 1$. $\left(\vec{l}_{\perp}^{\ \prime 2} = \frac{l_{\perp}^2}{z(1-z)}\right)$

$$\sigma_{\gamma^*_{L,T}}(W^2,Q^2) = lpha \sum Q_q^2 rac{1}{Q^2} \int dz \int dec{l}_\perp^{\,\,2} ec{l}_\perp^{\,\,2} ilde{\sigma}(ec{l}_\perp^{\,\,2},z(1-z),W^2) \left\{ egin{array}{c} 1,\ 2
ho_W. \end{array}
ight.$$

 ${f Substitution\ rule:}\qquad \sigma_{\gamma_L^*p}(W^2,Q^2) o\sigma_{\gamma_T^*p}(W^2,Q^2)$

via:

$$egin{aligned} K_0^2(r'_\perp Q) & o K_1^2(r'_\perp Q), \ && \sigma_{(qar q)p}(ec r_\perp^{-2},...) & o \sigma_{(qar q)p}(
ho_Wec r_\perp^{-2},...) \end{aligned}$$

Transverse-size enhancement (for $\rho_{\rm W} > 1$):

$$(\gamma_L^* \to q\bar{q}) \to (\gamma_T^* \to q\bar{q})$$

$$R(W^2, Q^2) \equiv rac{\sigma_{\gamma_L^* p}(W^2, Q^2)}{\sigma_{\gamma_T^* p}(W^2, Q^2)} = rac{1}{2
ho_W}$$

 $(qar q)_{L,T}^{J=1} \hspace{0.2cm} ext{states}: \hspace{0.2cm} \gamma_{L,T}^{*}
ightarrow (qar q)_{L,T}^{J=1}$

$$\sigma_{\gamma_{L,T}^{*}p}(W^{2},Q^{2}) = lpha \sum_{q} Q_{q}^{2} rac{1}{Q^{2}} rac{1}{6} \left\{ egin{array}{c} \int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_{L}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^{2}), \ 2 \int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_{T}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^{2}). \ \end{array}
ight.
onumber \ egin{array}{c}
ho_{W} = rac{\int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_{T}} rac{J}{I} = rac{1}{p}(ec{l}_{\perp}^{\,\prime 2},W^{2})}{\int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_{T}} rac{J}{I} = rac{1}{p}(ec{l}_{\perp}^{\,\prime 2},W^{2})} . \end{array}$$

Numerical value of $\rho_W = \rho$:

 $\vec{l}_{\perp}^{~2}=z(1-z)\vec{l}_{\perp}^{~\prime 2}$

$$\langle ec{l}_{\perp}^{~2}
angle_{L,T}^{ec{l}_{\perp}^{\prime\,2}=const} = ec{l}_{\perp}^{~\prime\,2} egin{cases} 6\int dz z^2 (1-z)^2 = rac{4}{20} ec{l}_{\perp}^{~\prime\,2}, \ rac{3}{2}\int dz \,\, z(1-z) (1-2z(1-z)) = rac{3}{20} ec{l}_{\perp}^{~\prime\,2}. \end{cases}$$

Uncertainty principle:

$$ho_W = rac{\langle r_{\perp}^2
angle_T}{\langle ec r_{\perp}^2
angle_L} = rac{\langle ec l_{\perp}^2
angle_L}{\langle ec l_{\perp}^2
angle_T} = rac{4}{3} \equiv
ho.$$

 $R = rac{1}{2
ho} = egin{cases} 0.5 & ext{for }
ho = 1, \ rac{3}{8} = 0.375 & ext{for }
ho = rac{4}{3}. \end{cases}$ ad hoc, helicity independence

Kuroda, Schildknecht (2008)

The W-dependence

$$egin{aligned} F_2(x,Q^2) &\cong rac{Q^2}{4\pi^2lpha} \left(\sigma_{\gamma_L^* p}(W^2,Q^2) + \sigma_{\gamma_T^* p}(W^2,Q^2)
ight) \ &= rac{\sum_q Q_q^2}{4\pi^2} \int dz \int dec{l}_\perp^{-2} ec{l}_\perp^{-2} ilde{\sigma}(ec{l}_\perp^{-2},z(1-z),W^2)(1+2
ho). \end{aligned}$$

Prabhdeep Kaur (2010)

Low-x Scaling

Empirically :

 $\Lambda^2_{sat}(W^2)\sim (W^2)^{C_2}$

 $\eta \equiv rac{Q^2+m_0^2}{\Lambda_{sat}^2(W^2)},$

Schildknecht, Surrow, Tentyukov (2000)

$$egin{aligned} \sigma_{\gamma^* p}(W^2,Q^2) &= \, \sigma_{\gamma^* p}(\eta(W^2,Q^2)) \ &\sim \, \sigma^{(\infty)} \left\{ egin{aligned} ln rac{1}{\eta(W^2,Q^2)} &, & ext{for} \,\, \eta(W^2,Q^2) \ll 1 \ & rac{1}{\eta(W^2,Q^2)} &, & ext{for} \,\, \eta(W^2,Q^2) \gg 1 \end{aligned}
ight. \end{aligned}$$

Low-x scaling: Direct consequence of CDP

$$egin{aligned} &\sigma_{(qar{q})_{L,T}^{J=1}p}(ec{r}_{\perp}^{\,\prime},W^2) \;=\; \int d^2ec{l}_{\perp}^{\,\prime}ar{\sigma}_{(qar{q})_{L,T}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)(1-e^{-iec{l}_{\perp}^{\,\prime}\cdotec{r}_{\perp}^{\,\prime}}) \ &=\; \pi\int dec{l}_{\perp}^{\,\prime 2}ar{\sigma}_{(qar{q})_{L,T}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)\cdot \underbrace{\left(1-rac{\int dec{l}_{\perp}^{\,\prime 2}ar{\sigma}_{(qar{q})_{L,T}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)J_0(ec{l}_{\perp}^{\,\prime}r_{\perp}^{\,\prime})}{\int dec{l}_{\perp}^{\,\prime 2}ar{\sigma}_{(qar{q})_{L,T}^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)}
ight). \end{aligned}$$

i) "1 - 1" destructive interference color transparency

$$ec{r}_{\perp}^{\;\prime 2} < rac{1}{ec{l}_{\perp}^{\;\prime} \;_{Max}(W^2)}$$

$$J_0(l_\perp' r_\perp')\cong 1-rac{1}{4}(l_\perp' r_\perp')^2+\cdots$$

ii) "1-0=1" hadronlike "saturation" $\frac{1}{l_{\perp}^{\prime 2} _{Max}(W^2)} < r_{\perp}^{\prime 2}$

$$egin{aligned} &\sigma_{(qar q)_{L,T}^{J=1}p}(r_{ot}^{\ \prime 2},W^2) \;\;&\cong\;\; \pi \int dec l_{ot}^{\ \prime 2} ar \sigma_{(qar q)_{L,T}^{J=1}p}(ec l_{ot}^{\ \prime 2},W^2) \ &\equiv\;\; \sigma_{L,T}^{(\infty)}(W^2) \end{aligned}$$

Note: a)
$$r_{\perp}^{\prime 2}$$
 fixed, $W^2 \to \infty$,
b) $r_{\perp}^{\prime 2} \to \infty$, W^2 fixed

$$\sigma_{\gamma^* p}(W^2, Q^2) \sim \begin{cases} \sigma^{(\infty)} rac{\Lambda^2_{sat}(W^2)}{Q^2} \sim rac{\sigma^{(\infty)}}{\eta(W^2, Q^2)} &, \ \eta(W^2, Q^2) \gg 1 \ \sigma^{(\infty)} ln rac{1}{\eta(W^2, Q^2)} &, \ \eta(W^2, Q^2) \ll 1 \end{cases} (i)$$

Direct consequence of CDP, NOT dependent on a specific parameterization dipole cross section.

$$egin{aligned} \Lambda^2_{sat}(W^2) \ \equiv \ rac{\int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_L^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)}{\int dec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_L^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2)} \ = \ rac{1}{\sigma_L^{(\infty)}(W^2)} \pi \cdot \int dec{l}_{\perp}^{\,\prime 2} ec{l}_{\perp}^{\,\prime 2} ar{\sigma}_{(qar{q})_L^{J=1}p}(ec{l}_{\perp}^{\,\prime 2},W^2) \end{aligned}$$

The limit of $\eta(W^2,Q^2)
ightarrow 0, \, {
m or} \, \, W^2
ightarrow \infty \, {
m at} \, \, Q^2$ fixed

$Q^2 [GeV^2]$	$W^2[GeV^2]$	$rac{\sigma_{\gamma^{st}p}(\eta(W^2,Q^2))}{\sigma_{\gamma p}(W^2)}$
1.5	$2.5 imes10^7$	0.5
	$1.26 imes10^{11}$	0.63

$$\sigma_{\gamma^*p}(W^2,Q^2)=\sigma_0(Q^2)\left(rac{1}{2Mp}rac{W^2}{Q^2}
ight)^{\lambda_{eff}(Q^2)}$$

 Q^2 -independent limit at approximately

 $W^2\simeq 10^9 Q^2.$

Summarizing this Section on model-independent results:

$$R = rac{1}{2
ho} = rac{3}{8};$$

$$ext{Low} - ext{x} ext{ scaling}: \quad \sigma_{\gamma^* p} \sim \sigma^{(\infty)} \left\{ egin{array}{cc} rac{1}{\eta(W^2,Q^2)} &, & \eta(W^2,Q^2) > 1, \ ln rac{1}{\eta(W^2,Q^2)} &, & \eta(W^2,Q^2) > 1. \end{array}
ight.$$

 $W^2 o \infty,$

 $Q^2 ext{ fixed }: Q^2 - ext{ independent limit coinciding with } Q^2 = 0 ext{ photoproduction}, \sigma_{\gamma \mathrm{p}}(\mathrm{W}^2).$

3. The CDP, the Gluon Distribution Function and Evolution.

 $\mathbf{CDP} \leftrightarrow \mathbf{Photon}\textbf{-}\mathbf{Gluon}\ \mathbf{Fusion}\ \mathbf{of}\ \mathbf{pQCD}$

 $egin{aligned} F_L(x,Q^2) &= rac{lpha_s(Q^2)}{3\pi} \sum_q Q_q^2 \cdot 6I_g(x,Q^2), \ & ext{where} \ I_g(x,Q^2) &\equiv \int_x^1 rac{dy}{y} \left(rac{x}{y}
ight)^2 \left(1-rac{x}{y}
ight) yg(y,Q^2). \ & ext{F}_L(\xi_L x,Q^2) &= rac{lpha_s(Q^2)}{3\pi} \sum_q Q_q^2 G(x,Q^2). \end{aligned}$

Cooper-Sarkar et al. (1988)

 $F_2(x,Q^2)=rac{5}{18}x\sum(x,Q^2).$

 $\frac{\partial F_2(\xi_2 x, Q^2)}{\partial \ln Q^2} = \frac{\alpha_s(Q^2)}{3\pi} \sum_q Q_q^2 G(x, Q^2).$ rescaling factors: $(\xi_L, \xi_2) \simeq (0.40, 0.50)$ $(\xi_L, \xi_2) = (0.45, 0.40)$ for specific Prytz (1993) gluon distribution. Accuracy ≤ 0.5 %. Using $F_L(x, Q^2) = \frac{1}{2\rho+1} F_2(x, Q^2)$: $(2\rho+1) \frac{\partial}{\partial \ln Q^2} F_2\left(\frac{\xi_2}{\xi_L} x, Q^2\right) = F_2(x, Q^2)$ i) CDP: $F_2(x, Q^2) = F_2(W^2)$: $(2\rho_W + 1) \frac{\partial}{\partial \ln W^2} F_2\left(\frac{\xi_L}{\xi_2} W^2\right) = F_2(W^2)$ ii) Power law

 $F_2(W^2) \sim (W^2)^{C_2} = \left(rac{Q^2}{x}
ight)^{C_2}$

Compare: "hard Pomeron" solution of DGLAP evolution:

 $\left(\frac{1}{x}\right)^{\lambda = \text{ fixed}}$.

"hard Pomeron" Regge: $\left(\frac{1}{x}\right)^{\epsilon_0 \simeq 0.43}$

 $(2
ho_W+1)C_2\left(rac{\xi_L}{\xi_2}
ight)^{C_2}=1$

with
$$ho = rac{4}{3},$$
 $C_2 = rac{1}{2
ho+1} \left(rac{\xi_2}{\xi_L}
ight)^{C_2} = 0.29$

Kuroda, Schildknecht (2011)

Experimental evidence for $F_2(x,Q^2)=F_2(W^2\cong Q^2/x)$ and for the prediction of $C_2=0.29.$

The Gluon Distribution Function

$$egin{aligned} lpha_s(Q^2)G(x,Q^2) &= rac{3\pi}{\sum_q Q_q^2}F_L(\xi_L x,Q^2) \ &= rac{3\pi}{\sum_q Q_q^2}rac{1}{(2
ho+1)}F_2(\xi_L x,Q^2) \ &= rac{3\pi}{\sum_q Q_q^2}rac{1}{(2
ho+1)}rac{f_2}{F_2}\left(rac{W^2}{1{
m GeV}^2}
ight)^{C_2=0.29} \end{aligned}$$

Comments:

$$ext{CDP:} \ F_{L,2} = F_{L,2} \left(W^2 = rac{Q^2}{x}
ight),
onumber
ho = ext{ const.} = rac{4}{3},$$

 $C_2=0.29~{
m from~evolution}$ $f_2=0.063~{
m fit~parameter}$

Comparison with gluon distributions from Durham data file using $lpha_s(Q^2) = lpha_s(Q^2)^{NLO}$

Cvetic, Schildknecht, Surrow, Tentyukov (2001)

Model-independently:

$$\sigma_{\gamma^* p} \sim \left\{egin{array}{ccc} ln rac{1}{\eta(W^2,Q^2)} &, & \eta(W^2,Q^2) \ll 1 \ rac{1}{\eta(W^2,Q^2)} &, & \eta(W^2,Q^2) \gg 1 \end{array}
ight.$$

Detailed ansatz for dipole cross section: Interpolation between $\eta(W^2, Q^2) < 1$ and $\eta(W^2, Q^2) > 1$.

Simple ansatz with $ho = 1, \quad \left(R = \frac{1}{2\rho} = \frac{1}{2}\right)$:

$$egin{aligned} &\sigma_{(qar q)p}(ec r_ot, z(1-z), W^2) = \sigma^{(\infty)}(W^2) \left(1 - J_0\left(r_ot\sqrt{z(1-z)}\Lambda_{sat}(W^2)
ight)
ight) \ &\sigma_{\gamma^*p}(W^2, Q^2) \ = \ \sigma_{\gamma^*p}(\eta(W^2, Q^2)) + O\left(rac{m_0^2}{\Lambda_{ ext{sat}}^2(W^2)}
ight) = \ &\sigma_{\gamma^*p}(\eta(W^2, Q^2)) + O\left(rac{m_0^2}{\Lambda_{ ext{sat}}^2(W^2)}
ight) = \ &\sigma_{\gamma^*p}(w^2, Q^2) \ &= \ &\sigma_{\gamma^*p}(w^2, Q^2) = \$$

$$= \, rac{lpha R_{e^+e^-}}{3\pi} \sigma^{(\infty)}(W^2) I_0(\eta) + O\left(rac{m_0^2}{\Lambda_{
m sat}^2(W^2)}
ight), \,\,\,\,\,\, R_{e^+e^-} = 3 \sum_q Q_q^2.$$

$$egin{aligned} I_0(\eta(W^2,Q^2)) &= rac{1}{\sqrt{1+4\eta(W^2,Q^2)}}\lnrac{\sqrt{1+4\eta(W^2,Q^2)}+1}{\sqrt{1+4\eta(W^2,Q^2)}-1} &\cong \ &\cong egin{cases} \lnrac{1}{\eta(W^2,Q^2)}+O(\eta\ln\eta), & ext{for } \eta(W^2,Q^2) & o rac{m_0^2}{\Lambda_{ ext{sat}}^2(W^2)}, \ &rac{1}{2\eta(W^2,Q^2)}+O\left(rac{1}{\eta^2}
ight), & ext{for } \eta(W^2,Q^2) & o \infty, \end{aligned}$$

Generalization to $\rho = \frac{4}{3}$.

Constraint: $m_0^2 \le M_{aar a}^2, M_{aar a}'^2 \le m_1^2(W^2);$ Kuroda, Schildknecht (2011) $\sigma_{\gamma^* p} = \sigma_{\gamma^* p} \left(\eta(W^2, Q^2), rac{m_0^2}{\Lambda^2 \cdot (W^2)}, \xi \equiv rac{m_1^2(W^2)}{\Lambda^2 \cdot (W^2)}
ight),$ $\eta(W^2,Q^2) = rac{Q^2+m_0^2}{\Lambda^2+(W^2)},$ $\Lambda^2_{sat}(W^2) = C_1 \left(rac{W^2}{W^2_0} + 1
ight)^{C_2} \cong \ {
m const} \ \left(rac{W^2}{1 GeV^2}
ight)^{C_2}$ $C_1 = 1.95 GeV^2$ $W_0^2 = 1081 GeV^2$ $C_2 = 0.27(0.29)$ $m_{
m o}^2=0.15 GeV^2$ $m_1^2(W^2) = \xi \Lambda_{sat}^2(W^2) = 130 \Lambda_{sat}^2(W^2)$

Normalization by $Q^2 = 0$ photoproduction (Regge fit):

$$\sigma^{(\infty)}(W^2)\cong egin{cases} 30mb, & ext{(for 3 active flavors, } R_{e^+e^-}=2)\ 18mb, & ext{(for 4 active flavors, } R_{e^+e^-}=rac{10}{3}) \end{array}$$

The approach to saturation.

Comparison with Caldwell 6-parameter 2 P-fit: $\sigma_{\gamma^* p} = \sigma_0 \frac{M^2}{Q^2 + M^2} \left(\frac{l}{l_0}\right)^{\epsilon_0 + (\epsilon_1 - \epsilon_0)\sqrt{\frac{Q^2}{Q^2 + \Lambda^2}}}$

$$l = \frac{1}{2x_{bj}M_p}$$

Prabhdeep Kaur (2010)

Saturation limit:
$$\lim_{\substack{W^2 \to \infty \\ Q^2 \text{fixed}}} rac{F_2(x \cong Q^2/W^2, Q^2)}{\sigma_{\gamma p}(W^2)} = rac{Q^2}{4\pi^2 lpha}$$

Consider $Q_1^2 = 0.036 \ GeV^2$ and $Q_2^2 = 0.1 GeV^2$

$$egin{aligned} F_2(W^2,Q_2^2 &= 0.1 {
m GeV}^2) \ &= \ rac{Q_2^2}{Q_1^2} F_2(W^2,Q_1^2 &= 0.036 {
m GeV}^2) \ &= \ 2.78 F_2(W^2,Q_1^2 &= 0.036 {
m GeV}^2). \end{aligned}$$

$rac{1}{W^2} [ext{GeV}^{-2}]$	$F_2(W^2,Q_1^2=0.036{ m GeV}^2)$	$rac{Q_2^2}{Q_1^2}F_2(W^2, Q_1^2=0.036{ m GeV}^2)$
$2\cdot 10^{-5}$	$\cong 0.055$	0.15
10^{-4}	$\cong 0.04$	0.11

$F_2(W^2)$ and gluon distribution.

$$egin{aligned} F_2(W^2) &= f_2 \left(rac{W^2}{1 \; GeV^2}
ight)^{0.29} \; , \; \; \; f_2 = 0.063 \ &10 GeV^2 \leq Q^2 \leq 100 GeV^2 \end{aligned}$$

In terms of gluon distribution:

$$F_2(W^2=rac{Q^2}{x})=rac{(2
ho+1)\sum Q_q^2}{3\pi}m{\xi}_L^{C_2}lpha_s(Q^2)G(x,Q^2), \qquad \qquad \eta(W^2,Q^2)\gg 1.$$

Saturation behavior:

$$egin{aligned} F_2(W^2,Q^2) \ &\sim \ Q^2 \sigma_L^{(\infty)} \ln rac{\Lambda_{ ext{sat}}^2(W^2)}{Q^2+m_0^2} \ &\sim \ Q^2 \sigma_L^{(\infty)} \ln \left(rac{lpha_s(Q^2)G(x,Q^2)}{\sigma_L^{(\infty)}(Q^2+m_0^2)}
ight), \end{aligned}$$

$$\eta(W^2,Q^2)\ll 1.$$

CDP and pQCD-improved parton model

CDP and pQCD-improved parton model

The longitudinal structure function, $F_L(x,Q^2)$

5. Conclusions

Gauge-invariant (two-gluon) interaction of color dipole:

i) Color transparency

 $\sigma_{(qar q)p}(ec r_{ot}^{-2},W^2)\sim ec r_{ot}^{-2}, ext{ destructive interference}$

 $ext{relevant for } \eta(W^2,Q^2) = rac{Q^2 + m_0^2}{\Lambda_{sat}^2(W^2)} > 1, \quad \Lambda_{sat}^2(W^2) \sim (W^2)^{C_2 = 0.29}$

$$egin{aligned} F_2(x,Q^2) &= F_2(W^2 = Q^2/x) \ &\sim \Lambda^2_{sat}(W^2) \;, \quad (10 GeV^2,Q^2 < 100 GeV^2) \ &\sim lpha_s(Q^2)G(x,Q^2). \end{aligned}$$

Peaceful coexistence between CDP and pQCD-improved parton model

ii) Saturation

 $\sigma_{(qar q)p}(ec r_{ot}^{\ \prime},W^2)\sim\sigma^{(\infty)}, \quad ext{destructive interference has died out},$

relevant for $\eta(W^2, Q^2) < 1$,

$$F_2(x,Q^2) \sim Q^2 \sigma^{(\infty)} ln rac{lpha_s(Q^2) G(x,Q^2)}{\sigma^{(\infty)}(Q^2+m_0^2)}.$$

Smooth transition from $\eta(W^2,Q^2) \gg 1$ to $\eta(W^2,Q^2) \ll 1$, including $Q^2 = 0$.

There is only a single Pomeron.

Concrete model, interpolating the regions of $\eta(W^2, Q^2) > 1$ and $\eta(W^2, Q^2) < 1$, describes experimental data for $x \leq 0.1$, including $Q^2 = 0$ photoproduction.