Exclusive Diffraction at HERA

Outline:

- Vector mesons
- Deeply Virtual Compton Scattering

Justyna Tomaszewska
on behalf of the H1 and ZEUS Collaborations
New Trends in HERA Physics 2011
25.09.2011-28.09.2011

Ringberg Castle, Lake Tegernsee, Germany

HERA

Hadron Elektron Ring Anlage at DESY electron proton interactions collected luminosity $0.5 \mathrm{fb}^{-1} /$ experiment

Diffraction in ep collision at HERA

Non - diffractive ep

Diffractive ep

ZR View
photon probes internal structure of the proton

no quantum numbers exchanged

Diffractive Production

M - invariant mass of the vector meson
W - center-of-mass energy of the photon proton system
Q^{2} - virtuallity of the photon
t - the square of the momentum transfer between hadrons
M_{Y} - mass of the proton dissociation system

Regge Phenomenology vs. pQCD

Regge Phenomenology

$$
\mathrm{b}(\mathrm{~W})=\mathrm{b}_{0}+4 \alpha^{\prime} \cdot \ln \left(\frac{\mathrm{W}}{\mathrm{~W}_{0}}\right) \Longrightarrow \text { shrinkage }
$$

From fit to hadronic data :

$$
\alpha_{\mathrm{IP}}(\mathrm{t})=1.08+0.25 \cdot \mathrm{t}
$$

(Donnachie, Landshoff)

Perturbative QCD

Various pQCD inspired models exist
\Rightarrow little or no shrinkage
Justyna Tomaszewska | Exclusive Diffraction | Page 5

Exclusive Vector Meson Production

VDM+Regge

$$
\mathrm{b} \approx 4 \mathrm{GeV}^{2} \text { and } \alpha^{\prime} \approx 0 \text { no or little shrinkage }
$$

Vector mesons at HERA

zeus Υ

Mass scale

$$
\rho, \omega, \varphi, \psi, \psi(2 \mathrm{~s}), \Upsilon
$$

The W-dependence of the "light" vector-meson (ρ, ω, ϕ) production is described by Regge phenomenology

$$
\delta \approx 0.22
$$

For higher mass vector mesons the rise of the production cross section with W gets steeper.

This indicates the on set of hard diffractive scattering

W dependence

Elastic J/ ψ Photoproduction

$$
\sqrt{s}=318 \mathrm{GeV}-\text { nominal energy run }
$$

Reduced energy run \rightarrow allow to extend the phase-space towards lower W.

Simultaneous extraction of the exclusive and proton-diffractive components from the data.

W dependence

Photoproduction
 ZEUS

$>$ cross section W dependence, $\sigma \sim \mathrm{W}^{\delta}$:
$>$ two measured points $\delta=1.2 \pm 0.8$
$>$ consistent with theoretical prediction, $\delta \sim 1.7$

W dependence as a function of Q^{2}

> H1 Collab., JHEP05 (2010) 032, 10/09
> ZEUS Collb, PMC Physics A 1, 6
$>\delta \sim 0.2$ for very low Q^{2}
\Rightarrow Cross section depends on Q^{2} (steeper with increasing Q^{2})

DVCS - W dependence as a function of Q^{2}

ZEUS

$>$ no δ dependence on Q^{2} is observed
$>$ hard regime

δ dependence as a function of scale $\mathbf{Q}^{2}+\mathrm{M}^{2}$

Process becomes hard as scale $\left(\mathrm{Q}^{2}+\mathrm{M}^{2}\right)$ be comes larger

t dependence

$$
\frac{d \sigma}{d|t|} \propto e^{-b|t|}
$$

Transverse size of interaction region: $\xrightarrow[\text { (gama) and target (proton) }]{\mathrm{b}} \mathrm{b}_{\mathrm{v}(\gamma)}+\mathrm{b}_{\mathrm{p}}$
Transverse size vector meson (gama) and target (proton)

The b -slope of ρ-production decreases with Q^{2}.

b slope

Transverse size of interaction region:

ZEUS

$$
b=4.3_{-1.1}^{+1.7}{ }_{-0.5}^{+0.5}\left[\mathrm{GeV}^{-2}\right]
$$

High $|t|$ proton dissociation change dependence of t

b slope

$\sqrt{\mathrm{s}}=318 \mathrm{GeV}-$ nominal energy run

Proton Dissociative J / ψ Photoproduction

$\sqrt{\mathrm{s}}=225 \mathrm{GeV}$ - reduced energy run

> Slight dependence slope of W
$>$ Differential proton dissociative cross section fitted with function behaving as an exponential at low $|t|$ and and follows a power law at larger $|t|$.

DVCS t dependence

t dependence of DVCS at ZEUS

ZEUS measures DVCS by using a direčitermer inimi measurement of the outgoing proton 4-momentum using the LPS spectrometer
$>$ No p dissociation background \rightarrow Low detector acceptance \rightarrow low statistics \rightarrow
Clean measurement

t dependence

Geometrical transverse size:

The slope b decreasing with increasing scale, to asymptotic value $5 \mathrm{GeV}^{-2}$

Pomeron trajectory

Measure W-dependence separately for different tbins Pomeron trajectory

$$
\alpha_{I P}(t)=\alpha_{I P}(0)+\alpha^{\prime} \bullet t
$$

Pomeron trajectory

$\alpha_{\text {IP }}^{\prime}$ depends on t
$\xrightarrow{\text { However }}$
for high $|t|$, proton diffractive processes dominate.

Exclusive dipion production

The two pion invariant mass is fitted as:

$$
\frac{d N}{d M_{\pi \pi}}=N\left[\left|F_{\pi \pi}\right|^{2}+B\left(\frac{M_{\rho}}{M_{\pi \pi}}\right)^{n}\right]
$$

$\mathrm{F}_{\pi}\left(\mathrm{M}_{\pi \pi}\right)=\left[\mathrm{BW}(\rho)+\beta \mathrm{BW}\left(\rho^{\prime}\right)+\gamma \mathrm{BW}\left(\rho^{\prime \prime}\right)\right] /(1+\beta+\gamma)$

- β, γ are relative amplitudes
- BW . Breit Wigner amplitude

ZEUS

ZEUS

Q22 dependence of relative amplitude

ZEUS

Fit: the masses and the widths of the three resonances were fixed to the values found in overall fit.

$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$2-5$	$5-10$	$10-80$
β	$-0.25 \pm 0.01_{-0.003}^{+0.005}$	$-0.28 \pm 0.01_{-0.008}^{+0.005}$	$-0.35 \pm 0.02 \pm 0.01$
γ	$0.10 \pm 0.01 \pm 0.003$	$0.10 \pm 0.01_{-0.003}^{+0.005}$	$0.12 \pm 0.02_{-0.006}^{+0.008}$

$>$ reasonable description of data in three Q^{2} regions
$>$ the absolute value of β increases with Q^{2}
$>\gamma$ remains Q^{2} independent within the uncertainties

Ratio as a function of \mathbf{Q}^{2}

Ratio is defined as:

$$
R_{V}=\frac{\sigma(V \rightarrow \pi \pi)}{\sigma(\rho(770))}
$$

> the value of $\mathrm{R} \rho^{\prime}(1450)$ increases with Q^{2}
$>$ the value of $\mathrm{R}^{\prime \prime}$ (1700) is approximately constant or slightly increases
$>$ ehis behavior is predicted by several models
$>\quad$ the suppression of the $2 S$ state $\left(\rho^{\prime}(1450)\right)$ is connected to a node effect which results in cancellations of contributions from different impact parameter regions at lower Q^{2}, while at higher Q^{2} the effect of cancellation vanishes

ZEUS

$>$ the D state $\left(\rho^{\prime \prime}(1700)\right)$ suppression is connected to the spinorial structure of the $\mathrm{q} \overline{\mathrm{q}}$ state into which the photon fluctuates.

Summary

- A large variety of Vector Mesons as well as Deeply Virtual Compton Scattering has been studied in wide kinematics range
$>$ The measurements allow the study the transition from the soft to the hard regime as a function of scale
$>$ Two pion mass distribution, $0.4<\mathrm{M}_{\pi \pi}<2.5 \mathrm{GeV}$ is well described by the pion electromagnetic form factor, which includes three resonances $\rho, \rho^{\prime}, \rho^{\prime \prime}$

BACKUP

Upsilon reference

RSS (kT) - A. Rybarska, W. Schafer, A. Szczurek, Phys. Lett.
B668(2008), p. 126.
IKS(NLO) -D.Yu. Ivanov, G. Krasnikov, L. Szymanowski, Nucl. Phys.
B (Proc. Suppl.)146(2005), p. 134.
FMS(CTEQ4L) -L.L. Frankfurt, M.F. McDermott,M.
Strikman,JHEP9902(1999), p. 002.
MNRT(HERA J/psi)-A.D. Martin, C. Nockles, M. Ryskin, T.
Teubner,Phys. Lett.B662(2008), p. 252.

W dependence as a function of \mathbf{Q}^{2}

Data Selection

- data collected by the ZEUS Detector 1998-2000 (82 pb-1)
- two pions and electron are measured in the detector
- no additional activity above noise level

Kinematical range:

- $0.4<\mathrm{M}_{\pi \pi}<2.5 \mathrm{GeV}$
- $2<\mathrm{Q}^{2}<80 \mathrm{GeV}^{2}$
- $32<\mathrm{W}<180 \mathrm{GeV}$
- $|t|<0.6 \mathrm{GeV}^{2}$

Number of events $\sim 63 \mathrm{k}$

Q^{2} dependence of Vector Mesons

Kowalski, Motyka, Watt with GolecBiernat Wuesthoff Saturation

Marin, Ryskin,Teubner model: does not provide normalisation (uncertainty on the quark invariant mass corresponding to the meson recombination)

Very good agreement between both experiments KMW: the shape of ρ and ϕ elastics cross sections are well described Normalisation of predictions is low by 10% for ρ and higher 25% for ϕ MRT: good description of Q^{2} dependence

Differential Elastic Cross Section as Function of t

High Energy Period

Low Energy Period

- Differential elastic cross section fitted with an exponential. b-slope for (error includes statistical and systematic uncertainty)
high energy period $\quad(5.77 \pm 0.19) \mathrm{GeV}^{-2}$
low energy period $\quad(4.75 \pm 0.5) \mathrm{GeV}^{-2}$
- Shallower b-slope for low energy period expected because of lower $W_{\gamma p}$ region and positive shrinkage of pomeron trajectory.
- b-slopes cannot directly be compared to published H 1 values because cross section were measured as function of $p_{t, \psi}^{2}$.

Remark: The normalisation uncertainty of 9% is not included in the error bars of the data points, but was taken into account for the fit. (This is the same for all cross sections.)

Q² dependence of DVCS

ZEUS

Results in agreement with previous measurements as well as with General Parton Model and Dipole Model

Par.	ZEUS(prel)	PDG
M_{ρ}	$771 \pm 2_{-1}^{+2}$	775.49 ± 0.34
Γ_{ρ}	$155 \pm 5 \pm 2$	149.4 ± 1
$M_{\rho^{\prime}}$	$1360 \pm 20_{-30}^{+20}$	1465 ± 25
$\Gamma_{\rho^{\prime}}$	$460 \pm 30_{-45}^{+40}$	400 ± 60
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{\rho^{\prime \prime}}$	$1770 \pm 20_{-20}^{+15}$	1720 ± 20
$\Gamma_{\rho^{\prime \prime}}$	$310 \pm 30_{-35}^{+25}$	250 ± 100
γ	$0.10 \pm 0.02_{-0.01}^{+0.02}$	

