Exclusive Diffraction at HERA

Outline:

• Vector mesons
• Deeply Virtual Compton Scattering

Justyna Tomaszewska
on behalf of the H1 and ZEUS Collaborations
New Trends in HERA Physics 2011
Ringberg Castle, Lake Tegernsee, Germany
Hadron Elektron Ring Anlage at DESY
electron proton interactions
collected luminosity 0.5fb^{-1}/experiment
Diffraction in ep collision at HERA

Non – diffractive ep

- Photon probes internal structure of the proton

Diffractive ep

- No quantum numbers exchanged

Rapidity Gap
Diffractive Production

\[V = \rho, \rho', \rho'', \varpi, \phi, J/\psi, \Upsilon, \gamma \]

- \(M \) – invariant mass of the vector meson
- \(W \) – center-of-mass energy of the photon proton system
- \(Q^2 \) – virtuality of the photon
- \(t \) – the square of the momentum transfer between hadrons
- \(M_Y \) – mass of the proton dissociation system
Regge Phenomenology vs. pQCD

Regge Phenomenology

(soft diffraction)

\[\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha' \cdot t \]

\[
\frac{d\sigma}{dt} \propto e^{b(W) - t} \left(\frac{W}{W_0} \right)^{4(\alpha_{IP}(t) - 1)}
\]

\[
b(W) = b_0 + 4\alpha' \cdot \ln \left(\frac{W}{W_0} \right)
\]

From fit to hadronic data:

\[\alpha_{IP}(t) = 1.08 + 0.25 \cdot t \]

(Donnachie, Landshoff)

\[\sigma_{tot} \propto \left(\frac{W}{W_0} \right)^{2(\alpha_{IP}(0) - 1)} \]

Perturbative QCD

(hard diffraction)

simplest approach: colorless 2 gluon exchange

BFKL-type gluon ladder exchange

Various pQCD inspired models exist

little or no shrinkage
独家矢量介子生产

VDM+Regge

\[
\frac{d\sigma}{dt} = e^{b_1 \left(\frac{W}{W_0} \right)^{4(\alpha_\text{IP}(t)-1)}} \quad \Rightarrow \quad \sigma(W) \propto W^\delta \quad ; \quad \delta \approx 0.22
\]

\[
b(W) = b_0 + 4\alpha' \ln \frac{W}{W_0} \quad \Rightarrow \quad \text{Shrinkage} \quad ; \quad b \propto r^2
\]

pQCD

\[
r^2 = \left[z(1-z)Q^2 + m_q^2 \right]^{-1} \quad \Rightarrow \quad r^2 \text{ small if } Q^2 \text{ large or } M_V \text{ large}
\]

\[
\sigma_{L} \propto \alpha_s^2(Q_{\text{eff}}^2) |x \cdot g(x,Q_{\text{eff}}^2)|^2 \quad \text{Ryskin} \quad ; \quad Q_{\text{eff}}^2 = \frac{1}{4}(Q^2 + M_V^2 + |t|)
\]

\[
\sigma(w) \propto W^\delta \quad ; \quad \delta \approx 0.8 \text{ fast rise with } W
\]

\[
b \approx 4 \text{ GeV}^2 \text{ and } \alpha' \approx 0 \quad \text{no or little shrinkage}
\]
Vector mesons at HERA
Mass scale

Photoproduction $Q^2 \approx 0$

The W-dependence of the “light” vector-meson ($\rho, \omega, \phi, \psi, \psi(2s)$) production is described by Regge phenomenology. The rise of the production cross section with W gets steeper. This indicates the onset of hard diffractive scattering.

For higher mass vector mesons, the rise of the production cross section with W gets steeper.

$\delta \approx 0.22$
Simultaneous extraction of the exclusive and proton-diffractive components from the data.

\[\sqrt{s} = 318 \text{ GeV} \] — nominal energy run

Reduced energy run
\[\Rightarrow \] allow to extend the phase-space towards lower W.
W dependence

Photoproduction

- cross section W dependence, $\sigma \sim W^\delta$
- two measured points $\delta = 1.2 \pm 0.8$
- consistent with theoretical prediction, $\delta \sim 1.7$

$\delta = 1.2 \pm 0.8$
W dependence as a function of Q^2

$\sigma \sim W^\delta$

- $\delta \sim 0.2$ for very low Q^2
- Cross section depends on Q^2 (steeper with increasing Q^2)

H1 Collab., JHEP05 (2010) 032, 10/09
ZEUS Collab, PMC Physics A 1, 6
DVCS - W dependence as a function of Q^2

$\sigma \sim W^\delta$

- $Q^2 = 8 \text{ GeV}^2$
- $Q^2 = 15.5 \text{ GeV}^2$
- $Q^2 = 25 \text{ GeV}^2$

- No δ dependence on Q^2 is observed
- Hard regime

ZEUS: JHEP05(2009)108
δ dependence as a function of scale $Q^2 + M^2$

Process becomes hard as scale $(Q^2 + M^2)$ becomes larger
The b-slope of ρ-production decreases with Q^2.

$$\frac{d\sigma}{d|t|} \propto e^{-b|t|}$$

Transverse size of interaction region: $b = b_{v(\gamma)} + b_p$
b slope

Transverse size of interaction region:

\[b = b_{v(\gamma)} + b_p \]

vector meson (gama) target (proton)

High \(|t|\) proton dissociation change dependence of \(t\)

\[b = 4.3^{+1.7}_{-1.1} \pm 0.5 [GeV^{-2}] \]
$\sqrt{s} = 318 \text{ GeV} - \text{nominal energy run}$

- Slight dependence slope of W
- Differential proton dissociative cross section fitted with function behaving as an exponential at low $|t|$ and and follows a power law at larger $|t|$.

$\sqrt{s} = 225 \text{ GeV} - \text{reduced energy run}$
DVCS t dependence

\[b = 5.45 \pm 0.19 \pm 0.34 \text{ GeV}^{-2} \]
for \(\langle Q^2 \rangle = 8 \text{ GeV}^2 \)

No evidence for W dependence of b

t dependence of DVCS at ZEUS

- ZEUS measures DVCS by using a direct measurement of the outgoing proton 4-momentum using the LPS spectrometer.
- No p dissociation background → Low detector acceptance → low statistics → Clean measurement
The slope b decreasing with increasing scale, to asymptotic value 5 GeV$^{-2}$

Geometrical transverse size:

$$b = b_{v(\gamma)} + b_p$$

Vector meson $b_v = \frac{1}{Q^2 + M^2}$

Target $b_p \approx 5$ GeV$^{-2}$

b_p can be interpreted as:

$\mathbf{r_{\text{gluons}}} \sim 0.5$ fm

Charge radius of the proton

$\mathbf{r_{\text{em}}} \sim 0.8$ fm
Pomeron trajectory

\[\frac{d\sigma}{dt} \propto e^{b(W)\cdot t} \left(\frac{W}{W_0} \right)^{4(\alpha_{IP}(t)-1)} \]

Measure W-dependence separately for different t-bins Pomeron trajectory

\[\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha' \cdot t \]
Pomeron trajectory

α'_IP depends on t

However for high $|t|$, proton diffractive processes dominate.
exclusive dipion production

The two pion invariant mass is fitted as:

\[
\frac{dN}{dM_{\pi\pi}} = N \left[|F_{\pi\pi}|^2 + B \left(\frac{M_\rho}{M_{\pi\pi}} \right)^n \right]
\]

\[F_\pi(M_{\pi\pi}) = \frac{[\text{BW}(\rho)+\beta\text{BW}(\rho')+\gamma\text{BW}(\rho'')]}{1+\beta+\gamma}\]

- \(\beta,\gamma\) are relative amplitudes
- \(\text{BW}\) Breit Wigner amplitude

- \(\rho\) (770) and \(\rho''\) (1700) are clearly visible, \(\rho'\) (1450) - a mere shoulder
- the masses and the widths of the \(\rho\) (770) and \(\rho''\) (1700) as well as the width of \(\rho'\) (1450) agree with PDG
Q² dependence of relative amplitude

Fit: the masses and the widths of the three resonances were fixed to the values found in overall fit.

- reasonable description of data in three Q² regions
- the absolute value of β increases with Q²
- γ remains Q² independent within the uncertainties
Ratio as a function of Q^2

Ratio is defined as:

$$R_V = \frac{\sigma(V \rightarrow \pi\pi)}{\sigma(\rho(770))}$$

- The value of $R\rho'(1450)$ increases with Q^2
- The value of $R\rho'' (1700)$ is approximately constant or slightly increases
- This behavior is predicted by several models
- The suppression of the 2S state ($\rho'(1450)$) is connected to a node effect which results in cancellations of contributions from different impact parameter regions at lower Q^2, while at higher Q^2 the effect of cancellation vanishes
- The D state ($\rho'' (1700)$) suppression is connected to the spinorial structure of the q\bar{q} state into which the photon fluctuates.
Summary

- A large variety of Vector Mesons as well as Deeply Virtual Compton Scattering has been studied in wide kinematics range.
- The measurements allow the study the transition from the soft to the hard regime as a function of scale.
- Two pion mass distribution, $0.4 < M_{\pi\pi} < 2.5$ GeV is well described by the pion electromagnetic form factor, which includes three resonances ρ, ρ', ρ''.
W dependence as a function of Q^2

INS-L Ivanov, Nikolev, Sawin with kt-unintegrated model

Goloskov, Kroll Generalised Parton Distributions

Kowalski, Motyka, Watt with Golec-Biernat Wuesthoff Saturation

H1 Collab., JHEP05 (2010) 032, 10/09
Data Selection

- data collected by the ZEUS Detector 1998-2000 (82 pb$^{-1}$)
- two pions and electron are measured in the detector
- no additional activity above noise level

Kinematical range:
- $0.4 < M_{\pi\pi} < 2.5$ GeV
- $2 < Q^2 < 80$ GeV2
- $32 < W < 180$ GeV
- $|t| < 0.6$ GeV2

Number of events ~63k
Q² dependence of Vector Mesons

Kowalski, Motyka, Watt with Golec-Biernat Wuesthoff Saturation

Marin, Ryskin, Teubner model: does not provide normalisation (uncertainty on the quark invariant mass corresponding to the meson recombination)

Very good agreement between both experiments

KMW: the shape of ρ and φ elastics cross sections are well described
Normalisation of predictions is low by 10% for ρ and higher 25% for φ

MRT: good description of Q² dependence
Differential Elastic Cross Section as Function of t

High Energy Period

- Differential elastic cross section fitted with an exponential.
 - b-slope for (error includes statistical and systematic uncertainty)
 - high energy period $(5.77 \pm 0.19) \text{ GeV}^{-2}$
 - low energy period $(4.75 \pm 0.5) \text{ GeV}^{-2}$

Low Energy Period

- Shallower b-slope for low energy period expected because of lower $W_{\gamma p}$ region and positive shrinkage of pomeron trajectory.
- b-slopes cannot directly be compared to published H1 values because cross section were measured as function of $p_{t, \psi}^2$.

Remark: The normalisation uncertainty of 9% is not included in the error bars of the data points, but was taken into account for the fit. (This is the same for all cross sections.)
\[\sigma \propto (Q^2 + M^2)^n \]

Results in agreement with previous measurements as well as with General Parton Model and Dipole Model.
<table>
<thead>
<tr>
<th>Par.</th>
<th>ZEUS(prel)</th>
<th>PDG</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{ρ}</td>
<td>$771 \pm 2^{+2}_{-1}$</td>
<td>775.49 ± 0.34</td>
</tr>
<tr>
<td>Γ_{ρ}</td>
<td>$155 \pm 5 \pm 2$</td>
<td>149.4 ± 1</td>
</tr>
<tr>
<td>$M_{\rho'}$</td>
<td>$1360 \pm 20^{+20}_{-30}$</td>
<td>1465 ± 25</td>
</tr>
<tr>
<td>$\Gamma_{\rho'}$</td>
<td>$460 \pm 30^{+40}_{-45}$</td>
<td>400 ± 60</td>
</tr>
<tr>
<td>β</td>
<td>$-0.27 \pm 0.02 \pm 0.02$</td>
<td></td>
</tr>
<tr>
<td>$M_{\rho''}$</td>
<td>$1770 \pm 20^{+15}_{-20}$</td>
<td>1720 ± 20</td>
</tr>
<tr>
<td>$\Gamma_{\rho''}$</td>
<td>$310 \pm 30^{+25}_{-35}$</td>
<td>250 ± 100</td>
</tr>
<tr>
<td>γ</td>
<td>$0.10 \pm 0.02^{+0.02}_{-0.01}$</td>
<td></td>
</tr>
</tbody>
</table>