J/ψ production with NRQCD: Unpolarized global analysis. Polarized photoproduction.

Mathias Butenschön (Hamburg University)

Collaborating with Bernd Kniehl

Production and decay rates of Heavy Quarkonia

Heavy Quarkonia: Bound states of heavy quark and antiquark.

- Charmonia (*cc̄*) and Bottomonia (*bb̄*)
- Top decays to fast for bound state.

The classic approach: Color-singlet model

- Calculate cross section for heavy quark pair in physical color singlet (=color neutral) state. In case of J/ψ: cc̄[³S₁^[1]]
- Multiply by quarkonium wave function (or its derivative) at origin
- Mid 90's: Strong disagreement with Tevatron data apparent

Nonrelativistic QCD (NRQCD):

- Rigorous effective field theory: Bodwin, Braaten, Lepage (1995)
- Based on factorization of soft and hard scales (Scale hierarchy: Mv², Mv << Λ_{QCD} << M)
- Could explain hadroproduction at Tevatron

J/ψ Production with NRQCD

Factorization theorem: $\sigma_{J/\psi} = \sum_{n} \sigma_{c\overline{c}[n]} \cdot \langle O^{J/\psi}[n] \rangle$

- *n*: Every possible Fock state, including **color-octet** states.
- $\sigma_{c\bar{c}[n]}$: Production rate of $c\bar{c}[n]$, calculated in perturbative QCD
- **<** $O^{J/\psi}[n]$ **>**: Long distance matrix elements (LDMEs): describe $c\bar{c}[n] \rightarrow J/\psi$, universal, extracted from experiment.

Scaling rules: LDMEs scale with definite power of $v (v^2 \approx 0.2)$:

scaling	<i>V</i> ³	V ⁷	<i>V</i> ¹¹
n	³ S ₁ ^[1]	¹ S ₀ ^[8] , ³ S ₁ ^[8] , ³ P _J ^[8]	

Double expansion in v and a_s

• Leading term in v ($n = {}^{3}S_{1}^{[1]}$) equals **color-singlet model**.

J/ψ Production with NRQCD: Knowledge until 2005

- CO LDMEs extracted from Born fit to Tevatron (one linear combination). Used for predictions at HERA and LEP.
- No NLO calculations for color-octet (CO) contributions yet!
- Universality of CO LDMEs open question.

NLO Corrections to Color Octet Contributions

- Petrelli, Cacciari, Greco, Maltoni, Mangano (1998):
 Photo- and hadroproduction (only 2 → 1 processes)
- Klasen, Kniehl, Mihaila, Steinhauser (2005):
 γγ scattering at LEP (neglecting resolved photons)
- M.B., Kniehl (2009):
 Photoproduction at HERA (neglecting resolved photons)
- Zhang, Ma, Wang, Chao (2009):
 e⁺e⁻ scattering at *B* factories
- Ma, Wang, Chao (2010): Hadroproduction (including feed-down contributions)
- M.B., Kniehl (2010): Hadroproduction (combined HERA-Tevatron fit)

Our 2011 work: (This talk!)

- **COLDMEs: Global fit** to unpolarized data (194 points).
 - Polarization predictions for photoproduction.
 - Test LDME universality.

Calculate Inclusive J/ ψ Production within NRQCD

Factorization formulas (here hadroproduction):

Convolute partonic cross section with proton PDFs: $\sigma_{hadr} = \sum_{i,j} \int dx \, dy \, f_{i/p}(x) f_{j/p}(y) \cdot \sigma_{part,i,j}$ NRQCD factorization: $\sigma_{part,i,j} = \sum_{n} \sigma(ij \rightarrow c\overline{c}[n] + X) \cdot \langle O^{J/\Psi}[n] \rangle$

Amplitudes for $c\overline{c}[n]$ production by projector application, e.g.:

$$A_{c\overline{c}[{}^{3}S_{1}^{[1/8]}]} = \varepsilon_{\alpha}(m_{s})\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$
$$A_{c\overline{c}[{}^{3}P_{l}^{[8]}]} = \varepsilon_{\alpha}(m_{s})\varepsilon_{\beta}(m_{l})\frac{d}{dq_{\beta}}\operatorname{Tr}\left[C \Pi^{\alpha} A_{c\overline{c}}\right]|_{q=0}$$

- $A_{c\overline{c}}$: Amputated pQCD amplitude for open $c\overline{c}$ production.
- **q**: Relative momentum between c and \overline{c} . ϵ : Polarization vectors.

Overview of IR Singularity Structure

Structure of Soft Singularities

Soft limits of the real corrections:

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

$$\begin{aligned} A_{\text{soft,s}} &= A_{\text{soft}}(0) = A_{\text{Born,s}} \cdot E(0) \\ A_{\text{soft,p}} &= A'_{\text{soft}}(0) = A_{\text{Born,p}} \cdot E(0) + A_{\text{Born,s}} \cdot E'(0) \\ |A_{\text{soft,s}}|^2 &= |A_{\text{Born,s}}|^2 \cdot E(0)^2 \\ |A_{\text{soft,p}}|^2 &= |A_{\text{Born,p}}|^2 \cdot E(0)^2 + 2 \operatorname{Re} A^*_{\text{Born,s}} A_{\text{Born,p}} \cdot E(0) E'(0) + |A_{\text{Born,s}}|^2 \cdot E'(0)^2 \end{aligned}$$

Radiative Corrections to LDMEs

In NRQCD: Long distance MEs = $c\overline{c}$ scattering amplitudes:

O[n] = 4-fermion operators $(n = {}^{3}S_{1}^{[1]}, {}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0/1/2}^{[8]}, \ldots)$

Corrections to $\langle O^{J/\psi}[{}^{3}S_{1}[{}^{1/8}] \rangle$ with NRQCD Feynman rules:

- UV singularity cancelled by renormalization of 4-fermion operator.
- IR singularity cancels soft #3 terms of P states.

CO LDMEs: Global Fit to unpolarized data

- We perform a fit to 194 data points from 26 data sets from 10 experiments: ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- Here: Consider inclusive unpolarized J/ψ production yield.
- Partonic Born cross sections: Parton + Parton → J/ψ + Parton (Parton means gluon or u, d, s, ū, đ, s̄ quark.)
- Partonic real correction cross sections: Parton + Parton $\rightarrow J/\psi$ + 2 Partons
- Set color singlet LDME to $\langle O[{}^{3}S_{1}[{}^{1}] \rangle = 1.32 \text{ GeV}^{3}$.
- Fit color octet LDMEs $<O[{}^{1}S_{0}{}^{[8]}]>$, $<O[{}^{3}S_{1}{}^{[8]}]>$ and $<O[{}^{3}P_{0}{}^{[8]}]>$.
- Ignore feed-downs in calculation, but effect estimated later on.
- Low p_{τ} hadroproduction cannot be described due to nonperturbative effects Exclude data points with $p_{\tau} < 3$ GeV.
- Photoproduction at HERA and yy scattering at LEP: For the first time including resolved photon contributions!

Global Fit Result

 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

Global Fit Result

 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

In Detail: Hadroproduction (RHIC, Tevatron)

- Color singlet model not enough to describe data (although increase from Born to NLO)
- CS+CO can describe data.
- ${}^{3}P_{J}^{[8]}$ short distance cross section **negative** at $p_{T} > 7$ GeV.
- But: Short distance cross sections and LDMEs unphysical
 No problem!

In Detail: Hadroproduction (LHC)

- Data from ALICE, ATLAS, CMS and LHCb.
- All data points assuming **unpolarized** J/ψ .
- Like at RHIC and Tevatron: CS far below data, CS+CO describes data well.
- Observation: Change s or rapidity y just rescaling of cross sections: CO LDMEs describing RHIC or Tevatron must also describe LHC!

In Detail: Photoproduction (ZEUS HERA1)

- **Distributions:** Transverse momentum (p_T), photon-proton c.m. energy (W), and z = Fraction of photon energy going to J/ψ .
- Again: Color singlet alone below the data, CS+CO describes data well.
- Calculation includes resolved photon contributions: Important at low z.
- Good description at high z: No increase like in older Born analyses!

In Detail: More Photoproduction

- Again: CS alone **below** data; **CS+CO** good description, especially at high *z*.
- H1 HERA2 data systematically below H1 HERA1 and ZEUS HERA1 + 2.

In Detail: Electron-Positron Scattering

- Double charmonium production cross section large (≈ 60%), but not included in our calculation.
 → Use BELLE measurement with J/ψ+cc̄ contribution subtracted.
- CS: Large overlap with data, CS+CO: Small overlap.
- Experimentally measurement of total cross section problematic, discrapencies between BELLE and BABAR (which is larger).
- For us, LO means J/ψ + parton, but in CMS, LO is J/ψ + 2 partons. In CMS, α_s corrections to J/ψ + 2 partons have been calculated, CS contribution increases. For consistency, not part of this analysis.

In Detail: Photon-Photon Scattering

- Photon-Photon scattering measured by DELPHI at LEP.
- For the first time contribution of resolved photons included at NLO (direct + single resolved + double resolved). Single resolved dominates.
- CS below data, but also CS+CO prediction too low. Possible explanations:
 - □ Uncertainties in the measurement (just 16 events involved!)
 - \Box Unknown higher order effects important at relatively low p_{T} .
 - □ Hint at problems with LDME universality.

J/ψ Polarization in Photoproduction

Angular distribution of decay lepton *I*⁺ in *J/ψ* rest frame
 Polarization observables λ, μ, ν:

 $\frac{d\Gamma(J/\psi \to l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda \cos^2\theta + \mu \sin(2\theta) \cos\phi + \frac{v}{2} \sin^2\theta \cos(2\phi)$

- Depends on choice of coordinate system:
 - □ Helicity frame: $z \text{ axis } \| -(\vec{p}_{\gamma} + \vec{p}_p)$
 - **Collins-Soper frame**: $z \text{ axis } \| \vec{p}_{\gamma} / |\vec{p}_{\gamma}| \vec{p}_{p} / |\vec{p}_{p}|$
 - **Target frame:** $z \operatorname{axis} \| \vec{p}_p$
- In Calculation: Plug in explicit expressions for cc[n] spin polarization vectors according to

$$\lambda = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \mu = \frac{\sqrt{2}\text{Re}\,d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}, \quad v = \frac{2d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$$

Here: Direct photoproduction. CO LDME set with feed-downs subtracted.

J/ψ Polarization Results: p_T Distributions

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **CSM** predicts **longitudinal** J/ψ at high p_T .
- **CS+CO:** largely **unpolarized** J/ψ at high p_T . α_s expansion converges better.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.

J/ψ Polarization Results: z Distribution

- Bands: Uncertainties due to scale variation and CO LDMEs.
- **Scale** uncertainties very large.
- Error bands of CSM and NRQCD largely overlap.

 p_{τ} distribution better suited to discriminate production mechanisms than z.

Summary

- NRQCD provides rigorous factorization theorem for heavy quarkonium production. But: Need to proof LDME universality.
- **Combined NLO fit** of NRQCD LDMEs to inclusive J/ψ production data from ALICE, ATLAS, BELLE, CDF, CMS, DELPHI, H1, LHCb, PHENIX, ZEUS.
- **CSM** predictions fall **short of data** everywhere except for $e^+e^- \rightarrow J/\psi + X$.
- Good agreement for CS+CO with data except perhaps for $\gamma\gamma \rightarrow J/\psi + X$.
- First NLO calculation of **polarized** J/ψ cross section including CO states: Direct photoproduction at HERA.
- NRQCD predicts largely **unpolarized** J/ψ , CSM **longitudinally** polarized.
- H1 and ZEUS data not precise enough to discriminate CSM / NRQCD.
- **Outlook:** Polarization at Tevatron and LHC.