Ringberg Workshop "New Trends in HERA Physics 2011"

On the way to a 3D picture of Review alog xperimental results on DVCS

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

have a pretty good knowledge on how many partons (with longitudinal momentum fraction x) we have in the nucleon

have a pretty good knowledge on how many partons (with longitudinal momentum fraction x) we have in the nucleon

BUT: proton not a 1D object!

3D glasses for a hadron physicist

position space ("GPDs")

a slice of the proton in transverse momentum space:

a slice of the proton in transverse momentum space:

a slice of the proton in transverse position space:

G. Schnell - EHU/UPV & IKERBASQUE

a slice of the proton in transverse position space:

G. Schnell - EHU/UPV & IKERBASQUE

pQCD: single-spin asymmetries (SSA) heavily suppressed:

$${f A_N} \propto lpha_{f S} {{f m_q}\over {f Q^2}}$$
 [Kane, Repko, Pumplin, 1978

]

pQCD: single-spin asymmetries (SSA) heavily suppressed:

BUT: large SSA in pp collision and semi-inclusive DIS

 $A_N \propto \alpha_S \frac{m_q}{\Omega^2}$ [Kane, Repko, Pumplin, 1978]

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

Unpolarized Drell-Yan cross section:

$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$$

cosθ

$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$$

• pQCD predicts Lam-Tung relation 2 ν =1- $\lambda \approx O_{1}$

$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$$

PQCD predicts Lam-Tung relation 2 ν =1- $\lambda \approx O_{1}$

G. Schnell - EHU/UPV & IKERBAS

• spin of quarks and gluons don't sum up to give proton spin $\frac{1}{2}$

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

$$+ \Delta G$$

$$+ L_q + L_g$$

$$quark spin \approx \frac{1}{2} \frac{1}{3}$$

$$gluon spin \approx 0$$

$$rbital angular \approx ?$$

• spin of quarks and gluons don't sum up to give proton spin $\frac{1}{2}$

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma$$

$$+ \Delta G$$

$$+ L_q + L_g$$

$$quark spin \approx \frac{1}{2} \frac{1}{3}$$

$$gluon spin \approx 0$$

$$rbital angular \approx ?$$

need orbital angular momentum (transverse space and momentum d.o.f.)

Some tradition in position-space

decades of nucleon form fac

G. Schnell - EHU/UPV & IKERBASQUE

Kingberg 2011

dition in position-space

Kingberg 2011

Last but not least ...

... curiosity

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

Towards a 3D picture of the n

[]

 $\begin{bmatrix} \end{bmatrix}$

n = 2

n = 2

[]

[[⁷]] 0.5

0

0

G. Schnell - EHU/UPV & IKERBASQUE

Towards a 3D picture of the n

[]

 $\begin{bmatrix} 1 \end{bmatrix}$

0.5

0

0.5

0

2

N

Form factors: transverse distribution $\underline{\underline{E}}$ of partons $\underline{\underline{E}}$

n = 2

n = 2

0

Parton distributions: longitudinal momentum of partons

Towards a 3D picture of the n

-0.6 - 0.4 - 0.2

0

0

Nucleon Tomography

correlated info on transverse position and longitudinal momentum

G. Schnell - EHU/UPV & IKERBASQUE

x: average longitudinal momentum fraction of active quark (usually not observed & $x \neq x_B$)

 ξ : half the longitudinal momentum change $\approx x_B/(2-x_B)$

	no quark	quark
	helicity flip	helicity flip
no nucleon helicity flip	Н	Ĥ
nucleon helicity flip	E	Ĩ

(+ 4 more chiral-odd functions)

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	Н	Ĥ
nucleon helicity flip	E	Ĩ

(+ 4 more chiral-odd functions)

$$\int dx H^{q}(x,\xi,t) = F_{1}^{q}(t)$$
$$\int dx E^{q}(x,\xi,t) = F_{2}^{q}(t)$$

G. Schnell - EHU/UPV & IKERBASQUE

$$\int dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \qquad H^{q}(x,\xi=0,t=0) = q(x)$$
$$\int dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \qquad \widetilde{H}^{q}(x,\xi=0,t=0) = \Delta q(x)$$

	no quark helicity flip	quark helicity flip
no nucleon nelicity flip	Н	Ĥ
nucleon nelicity flip	E	Ĩ

(+ 4 more chiral-odd functions)

T.r $b_{y\uparrow}$ P.0.0 Ji relation (1996) $J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x \, (H_q(x, \xi, t) + E_q(x, \xi, t))$ Moments of certain GPDs relate directly to the total angular momentum of quarks no quark quark helicity flip helicity flip no nucleon Н Η helicity flip $\int \mathrm{d}x H^q(x,\xi,t) = F_1^q(t)$

nucleon

helicity flip

 $\int \mathrm{d} x E^q(x,\xi,t) = F_2^q(t)$

Ĩ

E

(+ 4 more chiral-odd functions)

 $H^{q}(x, \xi = 0, t = 0) = q(x)$

 $\widetilde{H}^q(x,\xi=0,t=0) = \Delta q(x)$

Real-photon production

Real-photon production

Real-photon production

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for
$$\phi$$
:
 $|\mathcal{T}_{BH}|^2 = \frac{\mathcal{K}_{BH}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{BH} \cos(n\phi)$
 $|\mathcal{T}_{DVCS}|^2 = \mathcal{K}_{DVCS} \left[\sum_{n=0}^2 c_n^{DVCS} \cos(n\phi) + \mathcal{P}_B \sum_{n=1}^1 s_n^{DVCS} \sin(n\phi) \right]$

 \vec{k}'

 \vec{k}

7

2

- beam polarization P_B
- beam charge C_B
- here: unpolarized target

Fourier expansion for ϕ :

K____

$$\begin{aligned} |\mathcal{T}_{\mathsf{BH}}|^2 &= \frac{\kappa_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^{\infty} c_n^{\mathsf{BH}} \cos(n\phi) \\ \mathcal{T}_{\mathsf{DVCS}}|^2 &= \kappa_{\mathsf{DVCS}} \left[\sum_{n=0}^2 c_n^{\mathsf{DVCS}} \cos(n\phi) + \mathcal{P}_{\mathsf{B}} \sum_{n=1}^1 s_n^{\mathsf{DVCS}} \sin(n\phi) \right] \\ \mathcal{I} &= \frac{\mathcal{C}_{\mathsf{B}} \mathcal{K}_{\mathcal{I}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + \mathcal{P}_{\mathsf{B}} \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right] \end{aligned}$$

- beam polarization P_B
- beam charge CB
- here: unpolarized target

Fourier expansion for ϕ :

$$\mathcal{T}_{\text{DVCS}}|^{2} = \mathcal{K}_{\text{DVCS}} \left[\sum_{n=0}^{2} c_{n}^{\text{DVCS}} \cos(n\phi) + \mathcal{P}_{B} \sum_{n=1}^{1} s_{n}^{\text{DVCS}} \sin(n\phi) \right]$$
$$\mathcal{I} = \frac{C_{B} \mathcal{K}_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos(n\phi) + \mathcal{P}_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin(n\phi) \right]$$

bilinear ("DVCS") or linear in GPDs

G. Schnell - EHU/UPV & IKERBASQUE

Azimuthal asymmetries in DVCS/BH

Cross section:

 $\sigma(\phi,\phi_S,P_B,C_B,P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi)\right]$

G. Schnell - EHU/UPV & IKERBASQUE
Cross section:

 $\sigma(\phi,\phi_S,P_B,C_B,P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi)\right]$

 $|\mathcal{T}_{\rm DVCS}|^2 = K_{\rm DVCS} P_{\rm B} \sum s_n^{\rm DVCS} \sin(n\phi)$ n=1

Axy X=U,L Y=U,L,T target beam polarization

Cross section:

 $\sigma(\phi,\phi_S,P_B,C_B,P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_{C}(\phi)\right]$

G. Schnell - EHU/UPV & IKERBASQUE

Cross section:

 $\sigma(\phi,\phi_S,P_B,C_B,P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi)\right]$

Cross section:

 $\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi) + P_T \mathcal{A}_{UT}^{DVCS}(\phi, \phi_S) + C_B P_T \mathcal{A}_{UT}^{\mathcal{I}}(\phi, \phi_S)\right]$

G. Schnell - EHU/UPV & IKERBASQUE

 ϕ_S

Cross section:

 $\sigma(\phi,\phi_S,P_B,C_B,P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi)\right]$ $+P_T \mathcal{A}_{UT}^{\mathsf{DVCS}}(\phi, \phi_S) + C_B P_T \mathcal{A}_{UT}^{\mathcal{I}}(\phi, \phi_S)]$

- Azimuthal asymmetries, e.g.,
- Beam-charge asymmetry $A_{c}(\phi)$:

 $d\sigma(e^+,\phi) - d\sigma(e^-,\phi) \propto \operatorname{Re}[F_1\mathcal{H}] \cdot \cos\phi$

- Beam-helicity asymmetry $A_{LU}^{I}(\phi)$: $d\sigma(e^{\rightarrow},\phi) - d\sigma(e^{\leftarrow},\phi) \propto \ln[F_1\mathcal{H}] \cdot \sin\phi$
- Transverse target-spin asymmetry $A_{UT}(\phi)$: $d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \text{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi$ + $\operatorname{Im}[F_{2}\widetilde{\mathcal{H}} - F_{1}\xi\widetilde{\mathcal{E}}] \cdot \cos(\phi - \phi_{S}) \sin \phi$

 $(F_1, F_2 \text{ are the Dirac and Pauli form factors})$ $(\mathcal{H}, \mathcal{E} \dots \text{Compton form factors involving GPDs } H, E, \dots)$ G. Schnell - EHU/UPV & IKERBASQUE

 ϕ_S

Experimental requirements

- different beam charges
- Iongitudinal beam polarization
- target polarization:
 - Iongitudinal
 - transverse
- exclusivity:
 - missing-mass technique
 - recoil-proton detection
- G. Schnell EHU/UPV & IKERBASQUE

Experimental requirements

- different beam charges
- Iongitudinal beam polarization
- target polarization:
 - Iongitudinal
 - transverse
- exclusivity:
 - missing-mass technique
 - recoil-proton detection

□ (planned)

CLAS

Hall A

JLab

[]]

е

Excusivity: missing-mass technique

First DVCS signals results one DYE

clear sinusoidal modulations support of handbag approach

Office of

DVCS on "neutron" (aka ³He)

beam-helicity asymmetry sensitive to GPD E
 model-dependent constraint on total angular momentum

DVCS on "neutron" (aka ³He)

beam-helicity asymmetry sensitive to GPD E
 model-dependent constraint on total angular momentum

multi-dimensional binning in $(x_B, -t, Q^2)$

VGG model calculations: Phys. Rev. D60 (1999) 094017. Prog. Nucl. Phys. 47 (2001) 401.

multi-dimensional binning in $(x_B, -t, Q^2)$

VGG Model overshoots data (effect also observed for HERMES data)

VGG model calculations: Phys. Rev. D60 (1999) 094017. Prog. Nucl. Phys. 47 (2001) 401.

multi-dimensional binning in $(x_B, -t, Q^2)$

VGG Model overshoots data (effect also observed for HERMES data)

in general no satisfactory description by models

VGG model calculations: Phys. Rev. D60 (1999) 094017. Prog. Nucl. Phys. 47 (2001) 401.

A wealth of azimuthal amplitudes

G. Schnell - EHU/UPV & IKERBASQUE

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H

A wealth of azimuthal amplitudes

G. Schnell - EHU/UPV & IKERBASQUE

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H

A wealth of azimuthal amplitudes

G. Schnell - EHU/UPV & IKERBASQUE

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD \widetilde{H} Double-spin asymmetry: GPD \widetilde{H}

 model prediction "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

 G. Schnell - EHU/UPV & IKERBASQUE
 27

 Ringberg 2011

 model prediction "VGG": Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

 G. Schnell - EHU/UPV & IKERBASQUE
 27

 Ringberg 2011

A wealth of azimuthal amplitudes

G. Schnell - EHU/UPV & IKERBASQUE

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD H Double-spin asymmetry: GPD H

HERMES detector (2006/07)

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

HERMES detector (2006/07)

HERMES detector (2006/07)

- All 3 particles in final state detected \rightarrow 4 constraints from energy-momentum conservation
- Selection of pure BH/DVCS (ep \rightarrow ep γ) with high efficiency (~84%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (~0.1%)

Event samples

Without Recoil Detector

In Recoil Detector acceptance

With Recoil Detector

indication of larger amplitudes for pure sample

extraction of amplitudes for associated production underway

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
φ	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons

π^0	2∆u+∆d
η	2∆u–∆d
ρ	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
φ	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- vector-meson cross section:

π ⁰	2∆u+∆d
η	2∆u–∆d
ρ٥	2u+d, 9 <mark>g</mark> /4
ω	2u–d, 3 <mark>g</mark> /4
φ	s, <mark>g</mark>
ρ+	u–d
J/ψ	g

 $\frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t\,\mathrm{d}\phi_S\,\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\varphi} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t}W(x_B,Q^2,t,\phi_S,\phi,\cos\theta,\varphi)$

 $W = W_{UU} + P_B W_{LU} + S_L W_{UL} + P_B S_L W_{LL} + S_T W_{UT} + P_B S_T W_{LT}$

look at various angular modulations to study helicity transitions ("spin-density matrix elements")

target-polarization independent SDMEs

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

target-polarization independent SDMEs

target-polarization independent SDMEs

G. Schnell - EHU/UPV & IKERBASQUE

Ringberg 2011

^o SDMEs from HERMES

^o SDMEs from HERMES

G. Schnell - EHU/UPV & IKERBASQUE

^o SDMEs from HERMES

- COMPASS results: no L/T separation
- more data to come from 2010 run and future transverse
 DVCS program
- In principle sensitive to GPD E -> total angular momentum

Towards global GPD analyses (cf. next speaker)

γ* ^γ* $x + \xi$ $x-\xi$ H,E,H,E Ν N' Goloskokov, Kroll (2007) $\xi = 0.1$ $-H_v^d$ t = 0.0 \widetilde{H}_v^d -2 H_{Tv}^d E_v^u -4 -6 \widetilde{H}_v^u E_v^d -8 H_v^u $\xi = 0.1$ H^u_{Tv} t = 0.0-10 0.2 0.10.00.30.50.60.40.00.10.40.5-0.10.20.3-0.6xxRingberg 2011

Towards global GPD analyses

try out GPDs on set of DVCS azimuthal asymmetries:

Towards global GPD analyses

try out GPDs on set of DVCS azimuthal asymmetries:

The proton - seen with multi-D glasses

