Ringberg Workshop "New Trends in HERA Physics 2011"

On the way to a 3D picture of the nucleon structure

Recent results on GPDs from COMPASS, HERMES, and JLab

Incredible success of $p Q C D$

HERA F 2

Incredible success of $p Q C D$
 HERA F 2

Incredible success of $p Q C D$
 HERA F 2

have a pretty good knowledge on how many partons (with longitudinal momentum fraction x) we have in the nucleon

Incredible success of pQCD

have a pretty good knowledge on how many partons (with longitudinal momentum fraction x) we have in the nucleon

BUT: proton not a 1D object!

3D glasses for a hadron physicist

Is it interesting?

a slice of the proton in transverse momentum space:

without spin

Is it interesting?

a slice of the proton in transverse momentum space:

without spin

with spin

Is it interesting?

a slice of the proton in transverse position space:

Is it interesting?

a slice of the proton in transverse position space:

Is it relevant?

- pQCD: single-spin asymmetries (SSA) heavily suppressed:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{\mathbf{2}}} \quad[\text { Kane, Repko, Pumplin, 1978] }
$$

Is it relevant?

- pQCD: single-spin asymmetries (SSA) heavily suppressed:

$$
\mathbf{A}_{\mathbf{N}} \propto \alpha_{\mathbf{S}} \frac{\mathbf{m}_{\mathbf{q}}}{\mathbf{Q}^{2}} \quad \text { [Kane, Repko, Pumplin, 1978] }
$$

- BUT: large SSA in pp collision and semi-inclusive DIS

1976

2002

|991

2008

Is it relevant?

- Unpolarized Drell-Yan cross section:

$$
\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]
$$

Is it relevant?

- Unpolarized Drell-Yan cross section:

$\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
- pQCD predicts Lam-Tung relation $2 \nu=1-\lambda$ ≈ 0

Is it relevant?

- Unpolarized Drell-Yan cross section: $\left(\frac{1}{\sigma}\right)\left(\frac{d \sigma}{d \Omega}\right)=\left[\frac{3}{4 \pi}\right]\left[1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{v}{2} \sin ^{2} \theta \cos 2 \phi\right]$
- pQCD predicts Lam-Tung relation $2 \nu=1-\lambda$
- BUT: significant violations seen by Drell-Yan experiments

Is it relevant?

- spin of quarks and gluons don't sum up to give proton spin $\frac{1}{2}$

$$
\begin{array}{rlr}
\frac{1}{2}= & \frac{1}{2} \Delta \Sigma \\
& +\Delta G & \text { quark spin } \approx \frac{1}{2} 1 / 3 \\
& +L_{q}+L_{g}< & \begin{array}{c}
\text { gluon spin } \approx 0 \\
\text { orbital angular } \\
\text { momentum }
\end{array} \approx ?
\end{array}
$$

Is it relevant?

- spin of quarks and gluons don't sum up to give proton spin $\frac{1}{2}$

$$
\begin{aligned}
\frac{1}{2}= & \frac{1}{2} \Delta \Sigma \\
& +\Delta G \\
& +L_{q}+L_{g}<
\end{aligned} \begin{gathered}
\text { quark spin } \approx \frac{1}{2} 1 / 3 \\
\text { orbital angular spin } \approx 0 \\
\text { momentum }
\end{gathered} \approx ?
$$

- need orbital angular momentum (transverse space and momentum d.o.f.)

Some tradition in position-space

- decades of nucleon form factor measurements:

Some tradition in position-space

- decades of nucleon form factor measurements:

transverse size of proton

Last but not least ...

... curiosity

Towards a 3D picture of the nucleon

Form factors:
transverse distribution of partons

Towards a 3D picture of the nucleon

Form factors:
transverse distribution of partons

Parton distributions:
longitudinal momentum of partons

Towards a 3D picture of the nucleon

Form factors:
transverse distribution of partons

Nucleon Tomography
correlated info on transverse position and longitudinal momentum

x : average longitudinal momentum fraction of active quark (usually not observed \& $x \neq x_{B}$)
ξ : half the longitudinal momentum change $\approx x_{B} /\left(2-x_{B}\right)$

Probing GPDs in Exclusive Reactions

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

(+ 4 more chiral-odd functions)

Probing GPDs in Exclusive Reactions

$$
\begin{aligned}
& \int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) \\
& \int \mathrm{d} x E^{q}(x, \xi, t)=F_{2}^{q}(t)
\end{aligned}
$$

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

(+ 4 more chiral-odd functions)

Probing GPDs in Exclusive Reactions

\square

$$
\begin{array}{ll}
\int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) & H^{q}(x, \xi=0, t=0)=q(x) \\
\int \mathrm{d} \times E^{q}(x, \xi, t)=F_{2}^{q}(t) & \tilde{H}^{q}(x, \xi=0, t=0)=\Delta q(x)
\end{array}
$$

	no quark helicity flip	quark helicity flip
no nucleon helicity flip	H	\widetilde{H}
nucleon helicity flip	E	\widetilde{E}

Probing GPDs in Exclusive Reactions

 \rightarrow Moments of certain GPDs relate directly to the total angular momentum of quarks

$\sqrt{\square}$

$$
\begin{array}{ll}
\int \mathrm{d} x H^{q}(x, \xi, t)=F_{1}^{q}(t) & H^{q}(x, \xi=0, t=0)=q(x) \\
\int \mathrm{d} \times E^{q}(x, \xi, t)=F_{2}^{q}(t) & \widetilde{H}^{q}(x, \xi=0, t=0)=\Delta q(x)
\end{array}
$$

Real-photon production

Real-photon production

Bethe-Heitler

Real-photon production

Bethe-Heitler

$$
\frac{d^{4} \sigma}{d Q^{2} d x_{B} d t d \phi}=\frac{y^{2}}{32(2 \pi))^{4} \sqrt{1+\frac{4 M^{2} x_{\mathrm{B}}^{2}}{Q^{2}}}}\left(\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}+\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\mathcal{I}\right)
$$

Azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}=\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)
$$

- calculable in QED
(using FF measurements)

Azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{\mathrm{B}} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right]
\end{aligned}
$$

Azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{\mathrm{B}} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right] \\
\mathcal{I} & =\frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos (n \phi)+P_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right]
\end{aligned}
$$

Azimuthal dependences in DVCS/BH

- beam polarization P_{B}
- beam charge C_{B}
- here: unpolarized target

Fourier expansion for ϕ :

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2} & =\frac{K_{\mathrm{BH}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi) \\
\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2} & =K_{\mathrm{DVCS}}\left[\sum_{n=0}^{2} c_{n}^{\mathrm{DVCS}} \cos (n \phi)+P_{B} \sum_{n=1}^{1} s_{n}^{\mathrm{DVCS}} \sin (n \phi)\right] \\
\mathcal{I} & =\frac{C_{B} K_{\mathcal{I}}}{\mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)}\left[\sum_{n=0}^{3} c_{n}^{\mathcal{I}} \cos (n \phi)+\beta_{B} \sum_{n=1}^{2} s_{n}^{\mathcal{I}} \sin (n \phi)\right]
\end{aligned}
$$

bilinear ("DVCS") or linear in GPDs

Azimuthal asymmetries in DVCS/BH

Cross section:

$$
\sigma\left(\phi, \phi_{S}, P_{B}, C_{B}, P_{T}\right)=\sigma_{\mathrm{UU}}(\phi) \cdot\left[1+P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi)+C_{B} P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathrm{I}}(\phi)+C_{B} \mathcal{A}_{C}(\phi)\right.
$$

AXY
$X=U, L Y=U, L, T$
beam target
polarization

Azimuthal asymmetries in DVCS/BH

Cross section:

$$
\sigma\left(\phi, \phi_{S}, P_{B}, C_{B}, P_{T}\right)=\sigma_{\mathrm{UU}}(\phi) \cdot\left[1+P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi)+C_{B} P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathcal{I}}(\phi)+C_{B} \mathcal{A}_{C}(\phi)\right.
$$

$$
\left|\mathcal{T}_{\mathrm{DVCs}}\right|^{2}=K_{\mathrm{DVCs}} P_{B} \sum_{n=1}^{1} s_{n}^{\text {DVCs }} \sin (n \phi)
$$

Azimuthal asymmetries in DVCS/BH

Cross section:

Azimuthal asymmetries in DVCS/BH

Cross section:

$$
\sigma\left(\phi, \phi_{S}, P_{B}, C_{B}, P_{T}\right)=\sigma_{U U}(\phi) \cdot\left[1+P_{B} \mathcal{A}_{L U}^{\operatorname{DVCS}}(\phi)+C_{B} P_{B} \mathcal{A}_{L U}^{I}(\phi)+C_{B} \mathcal{A}_{C}(\phi)\right.
$$

Azimuthal asymmetries in DVCS/BH

Cross section:

$$
\sigma\left(\phi, \phi_{S}, P_{B}, C_{B}, P_{T}\right)=\sigma_{\mathrm{UU}}(\phi) \cdot\left[1+P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi)+C_{B} P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathrm{I}}(\phi)+C_{B} \mathcal{A}_{C}(\phi)\right.
$$

$$
\left.+P_{T} \mathcal{A}_{U T}^{\mathrm{DVCS}}\left(\phi, \phi_{S}\right)+C_{B} P_{\mathcal{T}} \mathcal{A}_{U T}^{T}\left(\phi, \phi_{S}\right)\right]
$$

Azimuthal asymmetries in DVCS/BH

Cross section:

$$
\sigma\left(\phi, \phi_{S}, P_{B}, C_{B}, P_{T}\right)=\sigma_{U U}(\phi) \cdot\left[1+P_{B} \mathcal{A}_{L U}^{\operatorname{DCS}}(\phi)+C_{B} P_{B} \mathcal{A}_{\mathrm{LU}}^{\mathcal{I}}(\phi)+C_{B} \mathcal{A}_{C}(\phi)\right.
$$

$$
\left.+P_{T} \mathcal{A}_{\mathrm{OT}}^{\mathrm{DVCS}}\left(\phi, \phi_{S}\right)+C_{B} P_{\mathcal{T}} \mathcal{A}_{\mathrm{UT}}^{\mathrm{T}}\left(\phi, \phi_{S}\right)\right]
$$

Azimuthal asymmetries, e.g.,

- Beam-charge asymmetry $A_{c}(\phi)$:

$$
d \sigma\left(e^{+}, \phi\right)-d \sigma\left(e^{-}, \phi\right) \propto \operatorname{Re}\left[F_{1} \mathcal{H}\right] \cdot \cos \phi
$$

- Beam-helicity asymmetry $A_{L U}{ }^{I}(\phi)$:

$$
d \sigma\left(e^{\rightarrow}, \phi\right)-d \sigma\left(e^{\leftarrow}, \phi\right) \propto \operatorname{Im}\left[F_{1} \mathcal{H}\right] \cdot \sin \phi
$$

- Transverse target-spin asymmetry $\operatorname{AUT}^{\mathrm{T}}(\phi)$:

$$
\begin{aligned}
d \sigma\left(\phi, \phi_{S}\right)-d \sigma\left(\phi, \phi_{S}+\pi\right) & \propto \operatorname{Im}\left[F_{2} \mathcal{H}-F_{1} \mathcal{E}\right] \cdot \sin \left(\phi-\phi_{S}\right) \cos \phi \\
& +\operatorname{Im}\left[F_{2} \widetilde{\mathcal{H}}-F_{1} \xi \widetilde{\mathcal{E}}\right] \cdot \cos \left(\phi-\phi_{S}\right) \sin \phi
\end{aligned}
$$

(F_{1}, F_{2} are the Dirac and Pauli form factors) $(\mathcal{H}, \mathcal{E} \ldots$ Compton form factors involving GPDs H, E, \ldots)

Experimental requirements

- different beam charges
- longitudinal beam polarization
- target polarization:
- longitudinal
- transverse
- exclusivity:
- missing-mass technique
- recoil-proton detection

Experimental requirements

- different beam charges
- (planned)
- longitudinal beam polarization 『
- target polarization:
- longitudinal $\boxed{\square}$
- transverse
- (planned)
- exclusivity:
- missing-mass technique ■
- recoil-proton detection \square

Experimental requirements

－different beam charges

- （planned）凹
- longitudinal beam polarization 『 （V）
－target polarization：
－Iongitudinal
凹 凹
－transverse
ㅁ（planned）『
－exclusivity：
－missing－mass technique IV

V
－recoil－proton detection
\square
E

Experimental requirements

（planned）
－different beam charges
ㅁ（planned）凹
\square
－longitudinal beam polarization 『
（g）
－target polarization：
－Iongitudinal
■
（V）
ㅁ（planned）『
\square

II
－transverse
－exclusivity：
－missing－mass technique V V
\square
－recoil－proton detection
\square
E（g）

Exclusivity: missing-mass technique

Exclusivity: missing-mass technique

Exclusivity: missing-mass technique

First DVCS signals ...

... from interference with BH [PRL 87 (2001)]

Increasing statistics

Increasing statistics

I- Clear evidence of DVCS contribution

Increasing statistics

(V) Clear evidence of DVCS contribution
[.] High statistics in small range in $Q^{2}, x_{B},-\dagger$

Increasing statistics

(-) Clear evidence of DVCS contribution
(V) High statistics in small range in $Q^{2}, x_{B},-\dagger$
[- "Verified" Bjorken scaling in small Q^{2} range [nucl-ex/0607029]

Information about GPD H

[Phys. Rev. Lett. 97 (2006) 262002]

Information about GPD H

DVCS on "neutron" (aka $\left.{ }^{3} \mathrm{He}\right)$

beam-helicity asymmetry sensitive to GPD E
-> model-dependent constraint on total angular momentum

DVCS on "neutron" (aka $\left.{ }^{3} \mathrm{He}\right)$

beam-helicity asymmetry sensitive to GPD E
-> model-dependent constraint on total angular momentum

Increasing statistics

Increasing statistics

Increasing statistics

multi-dimensional binning in ($x_{B},-\dagger, Q^{2}$)

VGG model calculations:
Phys. Rev. D60 (1999) 094017.
Prog. Nucl. Phys. 47 (2001) 401.

Increasing statistics

multi-dimensional binning in ($x_{B},-\dagger, Q^{2}$)

VGG Model overshoots data (effect also observed for HERMES data)

Increasing statistics

multi-dimensional binning in ($x_{B},-\dagger, Q^{2}$)

VGG Model overshoots data (effect also observed for HERMES data)
in general no satisfactory description by models

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD \tilde{H}
Double-spin asymmetry: GPD \tilde{H}

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD \tilde{H}
Double-spin asymmetry: GPD \tilde{H}

Beam-charge asymmetry

constant term:
$\propto-A_{C}^{\cos \phi}$
$\propto \operatorname{Re}\left[F_{1} \mathcal{H}\right]$
[higher twist]
[gluon leading twist]

Resonant fraction:

$$
e p \rightarrow e \Delta^{+} \gamma
$$

model prediction "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD \tilde{H}
Double-spin asymmetry: GPD \tilde{H}

model prediction "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

model prediction "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

G. Schnell - EHU/UPV \& IKERBASQUE

A wealth of azimuthal amplitudes

Beam-charge asymmetry: GPD H

Beam-helicity asymmetry: GPD H

Transverse target spin asymmetries: GPD E from proton target

Longitudinal target spin asymmetry: GPD \tilde{H}
Double-spin asymmetry: GPD \tilde{H}

Transverse target-spin asymmetry

model "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

Transverse target-spin asymmetry

model "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

Transverse target-spin asymmetry

model "VGG": Phys. Rev. D60 (1999) 094017 \& Prog. Nucl. Phys. 47 (2001) 401

HERMES detector (2006/07)

detection of recoiling proton

HERMES detector (2006/07)

kinematic fitting

HERMES detector (2006/07)

kinematic fitting

- All 3 particles in final state detected $\rightarrow 4$ constraints from energy-momentum conservation
- Selection of pure BH/DVCS (ep \rightarrow ep γ) with high efficiency ($\sim 84 \%$)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level ($\sim 0.1 \%$)

Event samples

Without Recoil Detector

In Recoil Detector acceptance

With Recoil Detector

DVCS with recoil detector

indication of larger amplitudes for pure sample

extraction of amplitudes for associated production underway

Exclusive meson production

Exclusive meson production

- GPDs convoluted with meson amplitude

- access to various quark-flavor combinations

π^{0}	$2 \Delta u+\Delta d$
η	$2 \Delta u-\Delta d$
ρ^{0}	$2 u+d, 9 \mathrm{~g} / 4$
ω	$2 u-d, 3 \mathrm{~g} / 4$
ϕ	$\mathrm{~s}, \mathrm{~g}$
ρ^{+}	$u-d$
$\mathrm{~J} / \psi$	g

Exclusive meson production

- GPDs convoluted with meson amplitude

- access to various quark-flavor combinations
- factorization proven for longitudinal photons

π^{0}	$2 \Delta u+\Delta d$
η	$2 \Delta u-\Delta d$
ρ^{0}	$2 u+d, 9 g / 4$
ω	$2 u-d, 3 g / 4$
ϕ	s, g
ρ^{+}	$u-d$
J / ψ	g

Exclusive meson production

- GPDs convoluted with meson amplitude

- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- vector-meson cross section:
$\frac{\mathrm{d} \sigma}{\mathrm{d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} t \mathrm{~d} \phi_{S} \mathrm{~d} \phi \mathrm{~d} \cos \theta \mathrm{~d} \varphi}=\frac{\mathrm{d} \sigma}{\mathrm{d} x_{B} \mathrm{~d} Q^{2} \mathrm{~d} t} W\left(x_{B}, Q^{2}, t, \phi_{S}, \phi, \cos \theta, \varphi\right)$
$W=W_{U U}+P_{B} W_{L U}+S_{L} W_{U L}+P_{B} S_{L} W_{L L}+S_{T} W_{U T}+P_{B} S_{T} W_{L T}$
look at various angular modulations to study helicity transitions ("spin-density matrix elements")

ρ^{0} SDMEs from HERMES

target-polarization independent SDMEs

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

ρ^{0} SDMEs from HERMES

"transverse" SDMES sdme valus

ρ^{0} SDMEs from HERMES

Transverse SSA

overall

- COMPASS results: no L/T separation
- more data to come from 2010 run and future transverse DVCS program
- in principle sensitive to GPD E \rightarrow total angular momentum

Towards global GPD analyses (cf. next speaker)

G. Schnell - EHU/UPV \& IKERBASQUE

Goloskokov, Kroll (2007)

40

Ringberg 2011

Towards global GPD analyses

\Rightarrow try out GPDs on set of DVCS azimuthal asymmetries:

Towards global GPD analyses

\Rightarrow try out GPDs on set of DVCS azimuthal asymmetries:

The proton - seen with multi-D glasses

