Selected phenomenological implications of a 4th generation in the Standard Model

Piermarco Fonda

Supervisor: Luca Silvestrini

Munich, July 18th, 2011

Outline

- The Standard Model
 - Fourth Generation
- Electroweak Precision Observales
 - Peskin-Takeuchi parameters
 - Fourth Generation contribution
- Lepton Flavour Physics
 - Fermi's Constant
 - LFV decays
- Mumerical Analysis
- Conclusions and Developments

• Local gauge field theory with group $SU(3)_C \times SU(2)_W \times U(1)_Y$

- \bullet Local gauge field theory with group $SU(3)_C \times SU(2)_W \times U(1)_Y$
- Each fermion lives in a **definite representation** of the gauge group:

$$Q_{Lj} = (U_{Lj}, D_{Lj}) \in (3, 2)_{+\frac{1}{6}}, \ U_{Rj} \in (3, 1)_{+\frac{2}{3}}, \ D_{Rj} \in (3, 1)_{-\frac{1}{3}}$$
$$L_{Lj} = (\nu_{Lj}, I_{Lj}) \in (1, 2)_{-\frac{1}{2}}, \ I_{Rj} \in (1, 1)_{-1}, \ (\nu_{Rj} \in (1, 1)_{0})$$

- \bullet Local gauge field theory with group $SU(3)_C \times SU(2)_W \times U(1)_Y$
- Each fermion lives in a **definite representation** of the gauge group:

$$\begin{aligned} Q_{Lj} &= (U_{Lj}, D_{Lj}) \in (3, 2)_{+\frac{1}{6}} , \ U_{Rj} \in (3, 1)_{+\frac{2}{3}} , \ D_{Rj} \in (3, 1)_{-\frac{1}{3}} \\ L_{Lj} &= (\nu_{Lj}, I_{Lj}) \in (1, 2)_{-\frac{1}{2}} , \ I_{Rj} \in (1, 1)_{-1} , \ (\nu_{Rj} \in (1, 1)_{0}) \end{aligned}$$

 There is a natural way to gather fermions into generations, with two leptons and two quarks in each

- ullet Local gauge field theory with group $SU(3)_C imes SU(2)_W imes U(1)_Y$
- Each fermion lives in a **definite representation** of the gauge group:

$$Q_{Lj} = (U_{Lj}, D_{Lj}) \in (3, 2)_{+\frac{1}{6}}, \ U_{Rj} \in (3, 1)_{+\frac{2}{3}}, \ D_{Rj} \in (3, 1)_{-\frac{1}{3}}$$
$$L_{Lj} = (\nu_{Lj}, I_{Lj}) \in (1, 2)_{-\frac{1}{2}}, \ I_{Rj} \in (1, 1)_{-1}, \ (\nu_{Rj} \in (1, 1)_{0})$$

- There is a natural way to gather fermions into generations, with two leptons and two quarks in each
- Nature has chosen to repeat the same structure three times, the only difference being the mass scales

	1	Ш	III
Quarks	u , d	c , s	t , b
Leptons	e, ν_e	$\mid \mu \ , \ u_{\mu} \mid$	τ , ν_{τ}

• The number of generations is **not** fixed by the theory, it has to be measured: can we suppose the existence of an additional **fourth generation**?

Fourth Generation

- The number of generations is **not** fixed by the theory, it has to be measured: can we suppose the existence of an additional **fourth generation**?
- We want to add **four** new particles:

	I	l II	III	IV
Quarks	u , d	c , s	t , b	t',b'
Leptons	$\mid e , \nu_e \mid$	$\mid \mu \ , \ u_{\mu} \mid$	$\mid au \; , \; u_{ au} \mid$	$ au', u'_{ au}$

- The number of generations is **not** fixed by the theory, it has to be measured: can we suppose the existence of an additional **fourth generation**?
- We want to add **four** new particles:

	l	Ш	III	IV
Quarks	u , d	c , s	t , b	t',b'
Leptons	$\mid e , \nu_e \mid$	$\mid \mu \ , \ u_{\mu} \mid$	$\mid \tau \; , \; u_{ au} \mid$	$\mid au' , u_ au'$

• **First comment**: the LEP measurement of Γ_{inv} , known the SM theoretical prediction of Z decay, gives:

$$N_{\nu} = 2.9840 \pm 0.0082$$

- The number of generations is **not** fixed by the theory, it has to be measured: can we suppose the existence of an additional **fourth generation**?
- We want to add **four** new particles:

		Ш		
Quarks Leptons	u , d	c , s	t , b	t',b'
Leptons	$ e, \nu_e $	$\mid \mu \ , \ u_{\mu} \mid$	$\mid au \ , \ u_{ au}$	$\mid au' , u_ au'$

• **First comment**: the LEP measurement of Γ_{inv} , known the SM theoretical prediction of Z decay, gives:

$$N_{\nu} = 2.9840 \pm 0.0082$$

If a fourth neutrino exists, it has to be heavier than $M_Z/2!$

• A stable heavy neutrino is **disfavoured** by cosmological considerations \Rightarrow we choose an **unstable** ν'_{τ} which can decay into lighter leptons: **PMNS mixing** (**Pontecorvo-Maki-Nakagawa-Sakata**)

- A stable heavy neutrino is **disfavoured** by cosmological considerations \Rightarrow we choose an **unstable** ν'_{τ} which can decay into lighter leptons: **PMNS mixing** (Pontecorvo-Maki-Nakagawa-Sakata)
- Experimental lower bound on new masses from collider physics

```
m_{\tau'} > 101.9 \quad \text{GeV} \quad \text{(L3)} \qquad m_{\nu'_{\tau}} > 90.3 \text{ (80.5)} \quad \text{GeV} \quad \text{(L3)} 
 m_{t'} > 256 \quad \text{GeV} \quad \text{(CDF)} \qquad m_{b'} > 199 \quad \text{GeV} \quad \text{(D\emptyset)}
```

- A stable heavy neutrino is **disfavoured** by cosmological considerations \Rightarrow we choose an **unstable** ν_{τ}' which can decay into lighter leptons: **PMNS mixing** (Pontecorvo-Maki-Nakagawa-Sakata)
- Experimental lower bound on new masses from collider physics

$$m_{\tau'} > 101.9 \quad {
m GeV} \quad {
m (L3)} \qquad m_{\nu'_{\tau}} > 90.3 \ (80.5) \quad {
m GeV} \quad {
m (L3)} \ m_{t'} > 256 \quad {
m GeV} \quad {
m (CDF)} \qquad m_{b'} > 199 \qquad {
m GeV} \quad {
m (D\emptyset)}$$

Perturbativity

$$m_{x'} \lesssim 600 \text{ GeV}$$

- A stable heavy neutrino is **disfavoured** by cosmological considerations \Rightarrow we choose an **unstable** ν_{τ}' which can decay into lighter leptons: **PMNS mixing** (Pontecorvo-Maki-Nakagawa-Sakata)
- Experimental lower bound on new masses from collider physics

$$m_{\tau'} > 101.9 \quad \text{GeV} \quad \text{(L3)} \qquad m_{\nu'_{\tau}} > 90.3 \text{ (80.5)} \quad \text{GeV} \quad \text{(L3)} m_{t'} > 256 \quad \text{GeV} \quad \text{(CDF)} \qquad m_{b'} > 199 \quad \text{GeV} \quad \text{(D\emptyset)}$$

Perturbativity

$$m_{x'} \lesssim 600 \text{ GeV}$$

- Radiative Corrections: loop effects
 - ⇒ contribution to EW gauge bosons propagators (*Oblique Corrections*)
 - ⇒ induced FCNC processes (Lepton Flavour Violating)

• The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain five purely EW, measurable new parameters M_Z , M_W , G_F , $\sin \theta_W$ and e

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain **five** purely EW, measurable new parameters $M_Z, M_W, G_F, \sin \theta_W$ and e
- **Loop** corrections to boson propagators (aka *oblique*) cannot be completely reabsorbed in parameters redefinitions, inducing **finite** non-zero modifications to relations between electroweak observables

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain **five** purely EW, measurable new parameters $M_Z, M_W, G_F, \sin \theta_W$ and e
- Loop corrections to boson propagators (aka oblique) cannot be completely reabsorbed in parameters redefinitions, inducing finite non-zero modifications to relations between electroweak observables
- Example:

$$M_W^2 = \cos^2 \theta_W M_Z^2$$

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain **five** purely EW, measurable new parameters $M_Z, M_W, G_F, \sin \theta_W$ and e
- Loop corrections to boson propagators (aka oblique) cannot be completely reabsorbed in parameters redefinitions, inducing finite non-zero modifications to relations between electroweak observables
- Example:

$$M_W^2 = \cos^2 \theta_W M_Z^2 (1 - \Delta \rho)$$

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain five purely EW, measurable new parameters $M_Z, M_W, G_F, \sin \theta_W$ and e
- Loop corrections to boson propagators (aka oblique) cannot be completely reabsorbed in parameters redefinitions, inducing finite non-zero modifications to relations between electroweak observables
- Example:

$$M_W^2 = \cos^2 \theta_W M_Z^2 (1 - \Delta \rho)$$

However:

The SM theoretical predictions leave space to further corrections: how much?

$$M_W^{exp} = 80.399 \pm 0.023 \text{ GeV}$$
 $M_W^{th} = 80.364 \pm 0.020 \text{ GeV}$
 $\mathbf{PULL} = \mathbf{1.5}$

- The unbroken $SU(2)_L \times U(1)_Y$ gauge sector has **three** free parameters: g, g' and the Higgs VEV
- After $SU(2)_L \times U(1)_Y \to U(1)_{em}$ we obtain **five** purely EW, measurable new parameters M_Z , M_W , G_F , $\sin \theta_W$ and e
- Loop corrections to boson propagators (aka oblique) cannot be completely reabsorbed in parameters redefinitions, inducing finite non-zero modifications to relations between electroweak observables
- Example:

$$M_W^2 = \cos^2 \theta_W M_Z^2 (1 - \Delta \rho)$$

However:

The SM theoretical predictions leave space to further corrections: how much?

$$M_W^{exp} = 80.399 \pm 0.023 \; {
m GeV} \quad M_W^{th} = 80.364 \pm 0.020 \; {
m GeV} \ {
m PULL} = {
m 1.5}$$

 $m_H = ?$

New Physics

The Peskin-Takeuchi parameters are three observable quantities S, T, U which measure how much space is left to radiative corrections in the EW sector coming from **New Physics**.

The Peskin-Takeuchi parameters are three observable quantities S, T, U which measure how much space is left to radiative corrections in the EW sector coming from New Physics. Generally:

$$X^{th} = X_{SM3}^{th}(m_H) + c_S^X \mathbf{S} + c_T^X \mathbf{T} + c_U^X \mathbf{U}$$

$$X = M_W \;,\; \Gamma_Z \;,\; R_h \;,\; A^e_{LR} \;,\; A^b_{FB} \;,\; Q_W(^{133}_{55}{\rm Ce}) \;,\; \dots$$

The Peskin-Takeuchi parameters are three observable quantities S, T, U which measure how much space is left to radiative corrections in the EW sector coming from New Physics. Generally:

$$X^{th} = X_{SM3}^{th}(m_H) + c_S^X \mathbf{S} + c_T^X \mathbf{T} + c_U^X \mathbf{U}$$

$$X = M_W$$
, Γ_Z , R_h , A_{IR}^e , A_{FR}^b , $Q_W(^{133}_{55}Ce)$, ...

Technically S, T, U are non-divergent combinations of the γ , Z, W gauge bosons self-energies.

It has been computed the contribution from the Fourth Generation: loop functions depend on new fermions masses, whose value can then be constrained.

 $m_H = 115 \text{ GeV}$

We find

- T parameter contribution is the most constraining
- ullet T depends on mass differences in the doublet, and regions where $m_{
 u_{\pi}'} < m_{ au'}$ and $m_{b'} < m_{t'}$ are preferred
- Higgs masses up to 1 TeV are possible
- With growing m_H , mass non-degeneracy increases

ullet The current most precise value of ${f G_F}$ is extracted from $\mu o {f e} ar
u
u$ decay

- ullet The current most precise value of ${f G_F}$ is extracted from $\mu o {f e} ar
 u$ decay
- Neutrinos in the final state are not detected and one implicitly sum over flavours of the final state:

$$\Gamma(\mu o e \bar{
u}
u) = \sum_{l,l'=e,\mu, au} \Gamma(\mu o e \bar{
u}_l
u_{l'})$$

- The current most precise value of G_F is extracted from $\mu \to e \bar{\nu} \nu$ decay
- Neutrinos in the final state are not detected and one implicitly sum over flavours of the final state:

$$\Gamma(\mu \to e \bar{\nu} \nu) = \sum_{l,l'=e,\mu,\tau} \Gamma(\mu \to e \bar{\nu}_l \nu_{l'})$$

• With a fourth family, the 3 × 3 PMNS submatrix is not unitary:

$$(G_{\it F}^{\it SM3})^2 = \sum_{l,l'=e,\mu, au} |V_{e
u_l}|^2 |V_{\mu
u_{l'}}|^2 (G_{\it F}^{\it SM4})^2 = (1-|{f V}_{e
u_{ au}'}|^2)(1-|{f V}_{\mu
u_{ au}'}|^2)(G_{\it F}^{\it SM4})^2$$

- The current most precise value of G_F is extracted from $\mu \to e \bar{\nu} \nu$ decay
- Neutrinos in the final state are not detected and one implicitly sum over flavours of the final state:

$$\Gamma(\mu \to e \bar{\nu} \nu) = \sum_{l,l'=e,\mu,\tau} \Gamma(\mu \to e \bar{\nu}_l \nu_{l'})$$

• With a fourth family, the 3×3 PMNS submatrix is not unitary:

$$(G_{\it F}^{\it SM3})^2 = \sum_{\it I,I'=e,\mu, au} |V_{e
u_{\it I}}|^2 |V_{\mu
u_{\it I'}}|^2 (G_{\it F}^{\it SM4})^2 = (1-|{f V}_{e
u_{m au'}}|^2)(1-|{f V}_{\mu
u_{m au'}}|^2)({f G}_{\it F}^{\it SM4})^2$$

- G_F^{SM4} is the "true" Fermi's which enters in other decays
- It is actually a **new** parameter of the Fourth Generation

$$G_F^{SM3} < G_F^{SM4} < 1.002 G_F^{SM3}$$

- ullet PMNS mixing ullet off-diagonal coupling between $u_{ au}'$ and charged leptons
- The heavy neutrino modifies the μ e γ , μ eZ and μ eee effective vertices which violate lepton flavour number conservation

- ullet PMNS mixing ullet off-diagonal coupling between $u_{ au}'$ and charged leptons
- The heavy neutrino modifies the μ e γ , μ eZ and μ eee effective vertices which violate lepton flavour number conservation

• It has been computed the contribution to

$$\mu
ightarrow \mathrm{e} \gamma$$
 $\mathrm{Z}
ightarrow \mu \mathrm{e} \mathrm{e}^+ \mathrm{e}^-$

 \bullet Branching ratios depend on $m_{\nu_{\tau}'}$ and on the neutrino-light charged lepton mixing

• The heavy neutrino modifies the μ e γ , μ eZ and μ eee effective vertices which violate lepton flavour number conservation

It has been computed the contribution to

$$\mu
ightarrow \mathrm{e} \gamma$$
 $\mathrm{Z}
ightarrow \mu \mathrm{e} \mathrm{e}^+ \mathrm{e}^-$

- ullet Branching ratios depend on $m_{
 u_{ au}'}$ and on the neutrino-light charged lepton mixing
- Yukawa interaction does not allow the suppression for $m_{\nu'_{\tau}} \to +\infty$: non decoupling

$$\begin{array}{c} BR(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11} & BR(\mu \rightarrow eee) < 1.0 \times 10^{-12} \\ BR(Z \rightarrow \mu e) < 1.7 \times 10^{-6} \end{array}$$

- ullet The Z effective coupling is particularly sensitive to $m_{
 u_{ au}'}$
- Included au physics

Numerical Analysis

- Bayesian approach
- Model parameters: fermion masses and $V_{e\nu'_{\tau}}$, $V_{\mu\nu'_{\tau}}$ and $V_{\tau\nu'_{\tau}}$

(at 2σ)

- Flat priors
- Marginalization of posterior distributions

$$|V_{\tau\nu_{\tau}'}| < 0.083$$

 $m_{\nu_{\tau}'} < 213~{
m GeV}~(1\sigma)$

Conclusions:

- A new generation is compatible with EWPO measurements (EWPO) and possibly enlarge the allowed mass range for the Higgs
- LFV decays receive significant contributions that can saturate the up-to-date upper bounds
- These same decays allow to estimate an **upper bound** on 4th neutrino mass as well on absolute values of mixing matrix elements

Conclusions:

- A new generation is compatible with EWPO measurements (EWPO) and possibly enlarge the allowed mass range for the Higgs
- LFV decays receive significant contributions that can saturate the up-to-date upper bounds
- These same decays allow to estimate an upper bound on 4th neutrino mass as well on absolute values of mixing matrix elements

Currently working on:

- Including the effects of heavy quarks to hadronic physics, particularly on CP violating decays and FCNC processes
- ullet Studying the effects of the non-unitarity of the 3 imes 3 CKM submatrix

Future developments:

- Include a Majorana neutrino (there is no see-saw)
- \bullet Study the model response to an actual measurement of $\mu \to e \gamma$

THE END Thank you for your attention

