Source stacking analysis of blazar neutrino sources with the ANTARES neutrino telescope

Francesco Borracci

Neutrino Astronomy

Photons: interact with matter and radiation

Protons: deflected by magnetic fields and (at high

energy) interact with CMBR

Neutrons: unstable particles

Neutrino problem: necessity of huge detectors

Neutrino production channels

Proton-photon Interaction

$$p\gamma \longrightarrow \Delta^+ \longrightarrow p\pi^0$$

$$p\gamma \longrightarrow \Delta^+ \longrightarrow n\pi^+$$

Proton-proton Interaction

$$pp \longrightarrow pp\pi^0$$

$$pp \longrightarrow pn\pi^+$$

With subsequent production of neutrinos and photons:

$$\pi^+ \longrightarrow \mu^+ \nu_\mu \longrightarrow e^+ \nu_e \overline{\nu}_\mu \nu_\mu$$

$$\pi^- \longrightarrow \mu^- \overline{\nu}_{\mu} \longrightarrow e^- \overline{\nu}_e \nu_{\mu} \overline{\nu}_{\mu}$$

$$\pi^0 \longrightarrow \gamma \gamma$$

ANTARES neutrino telescope

- It's an underwater telescope used for studying high energy neutrinos of cosmic origin
- •It is situated in the Mediterranean Sea off the coast of Toulon, France, at 2500 metres depth

How ANTARES works?

- "Electronic eyes"
 (PMTs) detect
 photons emitted by
 muons through
 Cerenkov radiation
- For muons above TeV muon-neutrino and muon tracks are almost collinear

Neutrino detection

Extragalactic neutrino source candidates : Blazars

- Neutrino production is directly linked with high energy photons (>TeV)
- Photons can interact: TeV signal avalanches to lower energies (GeV)
- Blazars represent the most important population of extragalactic objects in the GeV sky

Blazars from Fermi Catalogue

- •Fermi-LAT detects high energy photons (100 MeV 300 GeV)
- The first catalogue of AGN detected by Fermi (1LAC) has 599 sources (clean sample)
- About the 90% of 1LAC sources is classified as Blazar
- Huge sample for a better classification of BL Lac and FSRQ properties

Cuts applied on the sample

Excluded from the analysis:

- Blazars detected also at TeV or at hard-X energies
- BL Lac
- FSRQ not viewable from ANTARES
- Blazars which do not satisfy the redshift visual magnitude relation

Neronov-Semikoz model for the neutrino production

Why a stacking analysis?

•The aim of the stacking is to maximize the significance S_k of the signal:

$$S_{k} = \frac{\sum_{i=1}^{k \leq N} N_{\mu}(\gamma_{i}, \delta_{i}, \theta)}{\sqrt{\sum_{i=1}^{k \leq N} N_{\mu}(\gamma_{i}, \delta_{i}, \theta) + \sum_{i=1}^{k \leq N} N_{bg}(\delta_{i}, \theta)}}$$

- • $N_{\mu}(\gamma_i, \delta_i, \theta)$: is the number of expected neutrinos from a single source
- $N_{bg}(\delta_i, \theta)$: is the number of background neutrinos
- Virtual superposition of a sample of sources

Number of expected neutrinos

$$\int \frac{dN_{\gamma}}{dE_{\gamma}} E_{\gamma} dE_{\gamma} = x_{\nu/\gamma} \cdot \int \frac{dN_{\nu}}{dE_{\nu}} E_{\nu} dE_{\nu}$$

$$N_{\mu} = T \cdot f(\delta) \cdot P(\theta) \cdot \int_{4.8 \cdot 10^{13} eV}^{10^{16} eV} \frac{dN_{\nu}}{dE} \cdot A_{\nu}^{eff}(E) \cdot dE$$

- T: is the period of time of ANTARES taken data
- $f(\delta)$: is the visibility factor
- $A_{\nu}^{eff}(E)$: is the effective area
- $P(\theta)$: is the probability that a muon induced by a neutrino is viewable within the chosen bin

ANTARES data 2007-2008

- About 300 days of taken data
- •A dedicated program for the event reconstruction assigns a quality parameter to each track.
- Data fufil the Monte-Carlo simulations

ANTARES parametrizations 07-08

ANTARES background 07-08 (1)

• 2040 well reconstructed events

ANTARES background 07-08 (2)

Antares 2007+2008

$$N_{bg}(\delta, \theta) \approx \frac{dN(\delta)}{d\sin(\delta)} \cdot (1 - \cos(\theta))$$

Significance optimization

•Significance depends from the number of superposed sources and from the bin

Stacked Sources	Total sources	Bin(arcmin)
77	112	31
Total expected events	Total background	Significance
1.3	3.9	0.57σ

ANTARES sensitivity with respect to the FSRQ sample (1)

Sensitivity is derived from the Feldman-Cousins statistic

$$N_{\mu}^{S} = T \cdot \overline{f}(\delta) \cdot P(\theta) \cdot \int_{4.8 \cdot 10^{13} eV}^{10^{16} eV} k_{\nu}^{S} \cdot \frac{A_{\nu}^{eff}(E)}{E^{2}} \cdot dE$$

$$k_{\nu}^{DS} = \epsilon \cdot \xi \cdot \frac{k_{\nu}^{S}}{1.6\pi} \, \text{sr}^{-1}$$

- ϵ : is the stacking factor
- ξ : is the diffusive factor

ANTARES sensitivity with respect to the FSRQ sample (2)

$$k_{\nu}^{DS} = 3.3 \cdot 10^{-8} \; \; \mathrm{GeV \; cm^{-2} \; s^{-1} \; sr^{-1}}$$

Conclusions

- The sample used for the stacking analysis is constitued by 112 FSRQ
- Assuming the Neronov-Semikoz model, the number of neutrino events has been evaluated
- Optimization has been done using ANTARES 2007-2008 data
- It has been derived ANTARES diffuse sensitivity with respect to the considered sample

Visibility factor

Diffuse gamma flux (FERMI-LAT)

FSRQ contributes at 10% to the gamma diffuse flux