Some top partners at the LHC

Stefano Porto University of Padova

Munich, July 18, 2011

Supervisor: Donal O'Connell (Niels Bohr International Academy)

Stefano Porto

ELE DOG

Outline

The Hierarchy Problem

- 2 Supersymmetry and MSSM
- 3 The CCT model
- Some top partners at the LHC

Conclusions

-

Image: A math a math

三日 のへで

The Standard Model of particle physics

- It's our theoretical framework
- \bullet Electroweak and strong interactions \to from $\Lambda_{EW}\approx 10^2~GeV$ to $\Lambda_{Pl}\approx 10^{18}~GeV$
- Foresaw several particles, eventually seen: $b,\,t,\,
 u_{ au},\,W^{\pm},Z$
- Great accord with experiment

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

The Standard Model of particle physics

- It's our theoretical framework
- Electroweak and strong interactions \rightarrow from $\Lambda_{EW}\approx 10^2~GeV$ to $\Lambda_{Pl}\approx 10^{18}~GeV$
- Foresaw several particles, eventually seen: $b, t, \nu_{ au}, W^{\pm}, Z$
- Great accord with experiment

BUT

There are many open questions:

- Dark Matter?
- Matter-Antimatter asymmetry?
- Gravity?
- Hierarchy Problem?
- . . .

The Hierarchy Problem

Higgs (mass)²: quadratically divergent 1-loop corrections.

$$\mathscr{L}_{Yuk} \supset -\frac{y_t}{\sqrt{2}}H\overline{t}t$$

A counterterm is needed!

-

三日 のへで

The Hierarchy Problem

Higgs (mass)²: quadratically divergent 1-loop corrections.

$$\mathscr{L}_{Yuk} \supset -\frac{y_t}{\sqrt{2}}H\overline{t}t$$

 $\delta m_{H}^{2} \propto \int_{0}^{\infty} dk_{E} k_{E}$

A counterterm is needed!

イロト イポト イヨト イヨト

Renormalization \rightarrow momentum cut off up to Λ_{Pl}

$$\delta m_H^2|_t = -\frac{3m_t^2}{4\pi^2 v^2} \left[\Lambda_{PI}^2 + \dots\right] \approx 10^{36} \, (\text{GeV})^2$$

From phenomenological and experimental constraints we expected $m_H \sim 120$ GeV!

ELE SQA

The Hierarchy Problem

Considering all 1-loop quadratic divergent corrections:

A huge fine tuning is needed, due to the Big Desert $\Lambda_{EW} < \cdots < \Lambda_{PI}$.

Hypotheses:

- A not-yet observed low energy scale between Λ_{EW} and Λ_{PI} .
- There must be some kind of symmetry that tames the 1-loop corrections.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののの

Supersymmetry

Fermion and boson loops \longrightarrow relative sign \longrightarrow Let's relate fermions and bosons.

Supersymmetry, that's what we wanted:

$$Q|Boson
angle = |Fermion
angle, \quad Q|Fermion
angle = |Boson
angle$$

Supersymmetry algebra:

$$\{Q, Q^{\dagger}\} = P^{\mu},$$

$$\{Q, Q\} = \{Q^{\dagger}, Q^{\dagger}\} = 0,$$

$$[P^{\mu}, Q] = [P^{\mu}, Q^{\dagger}] = 0.$$

 $(P^{\mu}$ generator of Poincaré translations)

Supersymmetry and MSSM		

Single particle states fall into supermultiplets, with $\#_{fermionic}d.o.f. = \#_{bosonic}d.o.f.$:

- Chiral supermultiplet: 1 complex scalar field, 1 spin- $\frac{1}{2}$ Weyl fermion
- Vector supermultiplet: 1 spin- $\frac{1}{2}$ Weyl fermion, 1 massless gauge boson

 $[Q,P^2] = 0 \rightarrow$ superpartners have the same mass.

 $[Q, T^a] = 0 \rightarrow$ same gauge quantum numbers, same representation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 ののの

	Supersymmetry and MSSM		
Example			

Chiral supermultiplet (\tilde{f}, f) interacting with H:

 $-\lambda_{f}H\bar{f}f - \lambda_{\bar{f}}^{2}|H|^{2}|\tilde{f}|^{2}$ $-\int_{H} \int_{H} \int_{H$

Supersymmetry imply that $\lambda_f^2 = \lambda_{\tilde{f}}^2$ so the quadratic divergences neatly cancel!

・ロト ・回ト ・ヨト

Each SM particle has a superpartner.

Chiral supermultiplets

• spin-
$$\frac{1}{2}$$
 quarks: $Q_f = (u_L, d_L)_f, u_{Rf}, d_{Rf}$

• spin-
$$\frac{1}{2}$$
 leptons: $L_f = (\nu, e_L), e_{Rf}$

• spin-0 Higgs doublets (2!):
$$H_u$$
, H_d

$$\iff \text{ spin-0 } \underline{squarks}: \ \tilde{Q}_f = (\tilde{u}_L, \ \tilde{d}_L), \tilde{u}_{Rf}, \tilde{d}_{Rf}$$

$$\leftrightarrow$$
 spin-0 sleptons: $\tilde{L}_f = (\tilde{\nu}, \tilde{e}_L)_f, \tilde{e}_{Rf}$

$$\longleftrightarrow \quad \text{spin-}\frac{1}{2} \ \underline{\textit{Higgsinos}}: \ \tilde{\textit{H}}_u, \ \tilde{\textit{H}}_d$$

<ロ> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三< <0<

Each SM particle has a superpartner.

Chiral supermultiplets

• spin-
$$\frac{1}{2}$$
 quarks: $Q_f = (u_L, d_L)_f, u_{Rf}, d_{Rf}$

$$\iff \text{ spin-0 } \underline{squarks}: \ \tilde{Q}_f = (\tilde{u}_L, \ \tilde{d}_L), \ \tilde{u}_{Rf}, \ \tilde{d}_{Rf}$$

• spin-
$$\frac{1}{2}$$
 leptons: $L_f = (\nu, e_L), e_{Rf} \longrightarrow$ spin-0 spin-0 leptons: $\tilde{L}_f = (\tilde{\nu}, \tilde{e}_L)_f, \tilde{e}_{Rf}$

• spin-0 <u>Higgs doublets</u> (2!): H_u , H_d \longleftrightarrow spin- $\frac{1}{2}$ <u>Higgsinos</u>: \tilde{H}_u , \tilde{H}_d

Vector supermultiplets

• spin-1 gauge bosons g, W, B \longleftrightarrow spin- $\frac{1}{2}$ gauginos $\tilde{g}, \tilde{W}, \tilde{B}$

MSSM described by $W_{MSSM} = \bar{u} \mathbf{y}_{u} Q H_{u} - \bar{d} \mathbf{y}_{d} Q H_{d} - \bar{e} \mathbf{y}_{e} L H_{d} + \mu H_{u} H_{d}$.

Each SM particle has a superpartner.

Chiral supermultiplets

• spin-
$$\frac{1}{2}$$
 quarks: $Q_f = (u_L, d_L)_f, u_{Rf}, d_{Rf} \leftrightarrow$

$$\longleftrightarrow \quad \text{spin-0} \ \underline{squarks}: \ \tilde{Q}_f = (\tilde{u}_L, \ \tilde{d}_L), \tilde{u}_{R\,f}, \tilde{d}_{R\,f}$$

• spin-
$$\frac{1}{2}$$
 leptons: $L_f = (\nu, e_L), e_{Rf} \longleftrightarrow$ spin-0 spin-0 spin- $\tilde{L}_f = (\tilde{\nu}, \tilde{e}_L)_f, \tilde{e}_{Rf}$

• spin-0 Higgs doublets (2!):
$$H_u$$
, H_d \longleftrightarrow spin- $\frac{1}{2}$ Higgsinos: \tilde{H}_u , \tilde{H}_d

Vector supermultiplets

• spin-1 gauge bosons g, W, B \longleftrightarrow spin- $\frac{1}{2}$ gauginos $\tilde{g}, \tilde{W}, \tilde{B}$

MSSM described by $W_{MSSM} = \bar{u} \mathbf{y}_{u} Q H_{u} - \bar{d} \mathbf{y}_{d} Q H_{d} - \bar{e} \mathbf{y}_{e} L H_{d} + \mu H_{u} H_{d}$.

None of superpartners observed \longrightarrow SUSY must be broken!

H. Cai, H. C. Cheng, J. Terning, A spin-1 top quark superpartner, arXiv:0806.0386v3 [hep-ph]

Idea: find a model with a spin-1 stop instead of a spin-0 one.

H. Cai, H. C. Cheng, J. Terning, A spin-1 top quark superpartner, arXiv:0806.0386v3 [hep-ph]

Idea: find a model with a spin-1 stop instead of a spin-0 one.

How? SU(5) group: 24 \rightarrow (8,1,0) + (1,3,0) + (1,1,0) + (3,2,\frac{1}{6}) + (\bar{3},2,-\frac{1}{6})

H. Cai, H. C. Cheng, J. Terning, A spin-1 top quark superpartner, arXiv:0806.0386v3 [hep-ph]

Idea: find a model with a spin-1 stop instead of a spin-0 one.

How? SU(5) group: 24 \rightarrow (8,1,0) + (1,3,0) + (1,1,0) + (3,2,\frac{1}{6}) + (\overline{3},2,-\frac{1}{6})

The broken generators have the same quantum numbers of t_L , \bar{t}_L .

H. Cai, H. C. Cheng, J. Terning, A spin-1 top quark superpartner, arXiv:0806.0386v3 [hep-ph]

Idea: find a model with a spin-1 stop instead of a spin-0 one.

How? SU(5) group: 24 \rightarrow (8,1,0) + (1,3,0) + (1,1,0) + (3,2,\frac{1}{6}) + (\overline{3},2,-\frac{1}{6})

The broken generators have the same quantum numbers of t_L, \bar{t}_L .

The top yukawa term becomes a gaugino interaction term $\rightarrow \bar{t}_R$ still in a chiral supermultiplet.

Unified with the Higgs, in a $\mathbf{5}$ of SU(5):

$$\overline{I} \supset (\widetilde{\overline{T}}, H_d) + \theta(\overline{T}, \widetilde{H}_d), \quad I \supset (\widetilde{\overline{T}}^c, H_u) + \theta(\overline{T}^c, \widetilde{H}_u)$$

Gauge group: $\mathscr{G} = SU(3) \times SU(2) \times U(1)_H \times U(1)_V \times SU(5)$

Fields	SU(3)	SU(2)	U(2) _H	$U(1)_V$	SU(5)	$Y = H + V + \frac{1}{\sqrt{15}}T_{24}$
Qi			$\frac{1}{6}$	0	1	$\frac{1}{6}$
\overline{u}_i	Ō	1	$-\frac{2}{3}$	0	1	- 2 3
\bar{d}_i	Ō	1	$\frac{1}{3}$	0	1	1 3
L_i	1		$-\frac{1}{2}$	0	1	$-\frac{1}{2}$
ē _i	1	1	1	0	1	1
1	1	1	$\frac{1}{2}$	$\frac{1}{10}$		$(\frac{2}{3}, \frac{1}{2})$
Ī	1	1	$-\frac{1}{2}$	$-\frac{1}{10}$	Ō	$\left(-\frac{2}{3},-\frac{1}{2}\right)$
Φ3	Ō	1	$-\frac{1}{6}$	$\frac{1}{10}$		$(0, -\frac{1}{6})$
Φ ₂	1	Ō	0	$\frac{1}{10}$		$\left(\frac{1}{6},0\right)$
$\bar{\Phi}_3$		1	$\frac{1}{6}$	$-\frac{1}{10}$	ō	$\left(0, \frac{1}{6}\right)$
$\bar{\Phi}_2$	1		0	$-\frac{1}{10}$	Ō	$(-\frac{1}{6}, 0)$

$$\begin{split} W_{CCT} = & y_1 Q_3 \Phi_3 \bar{\Phi}_2 + \mu_3 \Phi_3 \bar{\Phi}_3 + \mu_2 \Phi_2 \bar{\Phi}_2 + y_2 \bar{u}_3 I \bar{\Phi}_3 + \mu_1 I \bar{I} \\ &+ Y_{Uij} Q_i \bar{u}_j \bar{\Phi}_2 I + Y_{Dij} Q_i \bar{d}_j \Phi_2 \bar{I} + Y_{Eij} L_i \bar{e}_j \Phi_2 \bar{I}. \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

Gauge group: $\mathscr{G} = SU(3) \times SU(2) \times U(1)_H \times U(1)_V \times SU(5)$

Fields	SU(3)	SU(2)	U(2) _H	$U(1)_V$	SU(5)	$Y = H + V + \frac{1}{\sqrt{15}}T_{24}$
Qi			$\frac{1}{6}$	0	1	$\frac{1}{6}$
ūi	Ō	1	$-\frac{2}{3}$	0	1	- 2 3
\bar{d}_i	Ō	1	$\frac{1}{3}$	0	1	1 3
Li	1		$-\frac{1}{2}$	0	1	$-\frac{1}{2}$
ē,	1	1	1	0	1	1
1	1	1	<u>1</u> 2	$\frac{1}{10}$		$(\frac{2}{3}, \frac{1}{2})$
7	1	1	$-\frac{1}{2}$	$-\frac{1}{10}$	Ō	$\left(-\frac{2}{3},-\frac{1}{2}\right)$
Φ3	Ō	1	$-\frac{1}{6}$	$\frac{1}{10}$		$(0, -\frac{1}{6})$
Φ ₂	1	Ō	0	$\frac{1}{10}$		$\left(\frac{1}{6},0\right)$
$\bar{\Phi}_3$		1	$\frac{1}{6}$	$-\frac{1}{10}$	ō	$(0, \frac{1}{6})$
$\bar{\Phi}_2$	1		0	$-\frac{1}{10}$	Ō	$(-\frac{1}{6}, 0)$

$$\begin{split} W_{CCT} = & y_1 Q_3 \Phi_3 \bar{\Phi}_2 + \mu_3 \Phi_3 \bar{\Phi}_3 + \mu_2 \Phi_2 \bar{\Phi}_2 + y_2 \bar{u}_3 I \bar{\Phi}_3 + \mu_1 I \bar{I} \\ &+ Y_{Uij} Q_i \bar{u}_j \bar{\Phi}_2 I + Y_{Dij} Q_i \bar{d}_j \Phi_2 \bar{I} + Y_{Eij} L_i \bar{e}_j \Phi_2 \bar{I}. \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

Gauge group: $\mathscr{G} = SU(3) \times SU(2) \times U(1)_H \times U(1)_V \times SU(5)$

Fields	SU(3)	SU(2)	U(2) _H	$U(1)_V$	SU(5)	$Y = H + V + \frac{1}{\sqrt{15}}T_{24}$
Qi			$\frac{1}{6}$	0	1	$\frac{1}{6}$
ūi	Ō	1	$-\frac{2}{3}$	0	1	- 2 3
- d _i	Ō	1	$\frac{1}{3}$	0	1	$\frac{1}{3}$
Li	1		$-\frac{1}{2}$	0	1	$-\frac{1}{2}$
ē,	1	1	1	0	1	1
1	1	1	<u>1</u> 2	$\frac{1}{10}$		$(\frac{2}{3}, \frac{1}{2})$
Ī	1	1	$-\frac{1}{2}$	$-\frac{1}{10}$	Ō	$\left(-\frac{2}{3},-\frac{1}{2}\right)$
Φ3	Ō	1	$-\frac{1}{6}$	$\frac{1}{10}$		$(0, -\frac{1}{6})$
Φ2	1	Ō	0	$\frac{1}{10}$		$\left(\frac{1}{6},0\right)$
$\bar{\Phi}_3$		1	$\frac{1}{6}$	$-\frac{1}{10}$	ō	$(0, \frac{1}{6})$
$\bar{\Phi}_2$	1		0	$-\frac{1}{10}$	Ō	$(-\frac{1}{6}, 0)$

$$\begin{split} W_{CCT} = & y_1 Q_3 \Phi_3 \bar{\Phi}_2 + \mu_3 \Phi_3 \bar{\Phi}_3 + \mu_2 \Phi_2 \bar{\Phi}_2 + y_2 \bar{u}_3 I \bar{\Phi}_3 + \mu_1 I \bar{I} \\ &+ Y_{Uij} Q_i \bar{u}_j \bar{\Phi}_2 I + Y_{Dij} Q_i \bar{d}_j \Phi_2 \bar{I} + Y_{Eij} L_i \bar{e}_j \Phi_2 \bar{I}. \end{split}$$

◆□ > ◆□ > ◆目 > ◆目 > 三日 のへで

After SUSY breaking, ${\mathscr G}$ is diagonally broken by the VEVs of $\Phi_2,\Phi_3,\bar\Phi_2,\bar\Phi_3$ into

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

<ロ> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三< <0<

After SUSY breaking, ${\mathscr G}$ is diagonally broken by the VEVs of $\Phi_2,\Phi_3,\bar\Phi_2,\bar\Phi_3$ into

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

The following fields have the quantum numbers of t_L (and \bar{t}_L)

and of \overline{t}_R

$$\begin{array}{cccc} \bar{u}_3 & \rightarrow & (\bar{\mathbf{3}},\mathbf{1},-\frac{2}{3}) & \rightarrow & \bar{u}_3 \\ \bar{l} & \rightarrow & (\mathbf{3},\mathbf{1},-\frac{2}{3})+(\mathbf{1},\mathbf{2},-\frac{1}{2}) & \rightarrow & \overline{T} \end{array}$$

After SUSY breaking, \mathscr{G} is diagonally broken by the VEVs of $\Phi_2, \Phi_3, \bar{\Phi}_2, \bar{\Phi}_3$ into

 $SU(3)_C \times SU(2)_L \times U(1)_Y$

The following fields have the quantum numbers of t_L (and \bar{t}_L)

and of \overline{t}_R

 $\begin{array}{cccc} \bar{u}_3 & \to & (\bar{\mathbf{3}}, \mathbf{1}, -\frac{2}{3}) & \to & \bar{u}_3 \\ \bar{l} & \to & (\mathbf{3}, 1, -\frac{2}{3}) + (\mathbf{1}, \mathbf{2}, -\frac{1}{2}) & \to & \overline{T} \end{array}$

With a certain choice of parameters (couplings, gaugino masses, VEVs) $\rightarrow t_L$ mainly λ , \overline{t}_R mainly \overline{T} .

CCT: quadratic divergences

Do quadratic divergences due to top/stop loops cancel each other?

No, we need to consider all the scalar particles of the SU(5) multiplet of the Higgs. Why? probably because of the previous \mathscr{G} symmetry breaking.

 $\underbrace{ Consequence:}_{Consequence:} \text{ It's hard to place strict mass bounds on } \vec{Q} \\ \downarrow \\ \text{Let's consider } m_{\vec{Q}} \text{ as a free parameter (expected between 100 GeV and 1 TeV)}$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Effective theory at the LHC: SM + \vec{Q} , \vec{Q}^*

$$\mathscr{L}_{\vec{Q}} = -(D_{\mu}\vec{Q}_{\nu})^{\dagger} [D^{\mu}\vec{Q}^{\nu} - D^{\nu}\vec{Q}^{\mu}] + m_{\vec{Q}}^{2}\vec{Q}_{\mu}\vec{Q}^{*\,\mu} + g'^{2}\vec{Q}\vec{Q}^{*}|H|^{2} + \text{decay operators}$$

with $D_{\mu}\vec{Q}_{\nu} = \left(\partial_{\mu} + ig_2W_{a\mu}\frac{\sigma^a}{2} + ig_1B_{\mu}\frac{1}{6} + i\frac{g_5}{2}\lambda^b g^b_{\mu}\right)\vec{Q}_{\nu}$

Production modes at the LHC (L.O.):

Production cross section of \vec{Q}, \vec{Q}^*

Figure: $\sigma(pp \rightarrow \vec{Q}\vec{Q}^*)$ from quarks (blue points) and gluons (purple points) vs $m_{\vec{Q}}$ at $\sqrt{s} = 7$ TeV

Figure: $\sigma(pp \rightarrow \vec{Q}\vec{Q}^*)$ from quarks (blue points) and gluons (purple points) vs $m_{\vec{Q}}$ at $\sqrt{s} = 14$ TeV

< 🗇 🕨

$$\hat{\sigma}(q\bar{q} \to \vec{Q}\vec{Q}^*) = \frac{2\pi}{9}\alpha_s^2 \frac{1}{\hat{s}^2} \left[\frac{\hat{s}^2}{3m_{\vec{Q}}^2} - \frac{\hat{s}}{3} - 4m_{\vec{Q}}^2 \right] \qquad \qquad \hat{\sigma}(gg \to \vec{Q}\vec{Q}^*) = \frac{\alpha_s^2}{8\hat{s}} \frac{\pi}{64} \frac{2}{3} \left(\frac{13\hat{s}^2}{m_{\vec{Q}}^4} - \frac{52\hat{s}}{m_{\vec{Q}}^2} \right)$$

Leading contribute from $gg
ightarrow ec{Q} ec{Q}^*$ process.

Decay scenarios

With this particle spectrum, we have different scenarios, depending on the charges we assign \vec{Q} :

• \vec{Q} has R-charge -1 and we introduce a lighter goldstino ν with R-charge -1. If \vec{Q} has Barion number the following lagrangian term is allowed

• \vec{Q} has *R*-charge +1 and doesn't have Barion number. It's permitted the operator:

고는

イロト イポト イヨト イヨト

		Conclusions
Conclusions		

- A model with a top left in a vector supermultiplet is available.
- At low energies, the structure of loop cancellation is delicate, involving many particles.
- At the LHC energies we have that the most important contribute to production cross section comes from $gg \to \vec{Q} \, \vec{Q}^*$ process.
- Depending on the R-charge of \vec{Q} , we have different scenarios.

ELE NOR

- 4 回 ト 4 三 ト 4 三 ト

		Conclusions

Thank you very much!

Chiral supermultiplets	Spin 0	Spin 1/2	$SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$	
Squarks-Quarks	Q _f	$ \left(\begin{array}{c} \tilde{u}_L \\ \tilde{d}_L \end{array}\right) $	$ \left(\begin{array}{c} u_L\\ d_L \end{array}\right) $	$(3, 2, \frac{1}{6})$
(one for each $f = u, c, t$)	ū d	$ ilde{u}_R^* \ ilde{d}_R^*$	$u_R^\dagger \ d_R^\dagger$	$egin{array}{r} (ar{f 3}, {f 1}, -rac{2}{3})\ (ar{f 3}, {f 1}, rac{1}{3}) \end{array}$
Sleptons-Leptons	L_{ϕ}	$\begin{pmatrix} \tilde{\nu} \\ \tilde{e}_L \end{pmatrix}$	$\begin{pmatrix} \nu \\ e_L \end{pmatrix}$	$(1, 2, -rac{1}{2})$
(one for each $\phi=e,\ \mu,\ au$)	ē	€ [*]	e_R^{\dagger}	(1, 1, 1)
Higgses-Higgsinos	Hu	$ \left(\begin{array}{c}H_{u}^{+}\\H_{u}^{0}\end{array}\right) $	$\left(\begin{array}{c} \tilde{H}_{u}^{+} \\ \tilde{H}_{u}^{0} \end{array}\right)$	$(1, 2, +rac{1}{2})$
	H _d	$\left \begin{array}{c} H_d^0\\ H_d^- \end{array}\right)$	$\left(\begin{array}{c} \tilde{H}_d^0\\ \tilde{H}_d^-\end{array}\right)$	$(1, 2, -rac{1}{2})$

Vector supermultiplets	Spin $rac{1}{2}$	Spin 1	$\rm SU(3)_C \times SU(2)_L \times U(1)_Y$
Gluinos-Gluons	ĝ	g	(8 , 1 , 0)
Winos-Ws	$\tilde{W}^{\pm}, \ \tilde{W}^{0}$	W^{\pm}, W^{0}	(1, 3 , 0)
Bino-B	\tilde{B}^{0}	B^0	(1,1,0)

Described by $W_{MSSM} = \bar{u} \mathbf{y}_u Q H_u - \bar{d} \mathbf{y}_d Q H_d - \bar{e} \mathbf{y}_e L H_d + \mu H_u H_d$.

1 = 1 = 1 A C

・ロト ・回ト ・ヨト ・ヨト

The CCT model: gaugino coupling

SUSY permits:

Then, after SUSY and *G* breaking

The top yukawa term becomes a gaugino interaction term \downarrow t_R still has a scalar partner. Unified in a supermultiplet containing the Higgs, **5** under SU(5):

$$\overline{I} = (\overline{T}, H_d), I = (\overline{T}^c, H_u)$$

< ロ > < 同 > < 三 > < 三

三日 のへで

After SUSY breaking, the potential for $\Phi_2, \Phi_3, \bar\Phi_2, \bar\Phi_3$ is assumed to be unstable so that they gets VEVs:

$$\begin{split} \langle \Phi_3 \rangle = \begin{pmatrix} f_3 & 0 & 0 & 0 & 0 \\ 0 & f_3 & 0 & 0 & 0 \\ 0 & 0 & f_3 & 0 & 0 \end{pmatrix}, \qquad \langle \overline{\Phi}_3 \rangle^T = \begin{pmatrix} \overline{f}_3 & 0 & 0 & 0 & 0 \\ 0 & \overline{f}_3 & 0 & 0 & 0 \\ 0 & 0 & \overline{f}_3 & 0 & 0 \end{pmatrix}, \\ \langle \Phi_2 \rangle = \begin{pmatrix} 0 & 0 & 0 & f_2 & 0 \\ 0 & 0 & 0 & 0 & f_2 \end{pmatrix}, \qquad \langle \overline{\Phi}_2 \rangle^T = \begin{pmatrix} 0 & 0 & 0 & \overline{f}_2 & 0 \\ 0 & 0 & 0 & 0 & \overline{f}_2 \end{pmatrix}, \\ & & & \downarrow \\ \mathscr{G} \text{ is diagonally broken by the VEVs into} \\ & & SU(3)_C \times SU(2)_L \times U(1)_Y \end{split}$$

<ロ> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三< <0<

After the breaking of \mathscr{G} into $SU(3)_C \times SU(2)_L \times U(1)_Y$:

these fields have the quantum numbers of t_L (and \bar{t}_L)

and of \overline{t}_R

$$\begin{array}{cccc} \bar{u}_3 & \rightarrow & (\bar{\mathbf{3}},\mathbf{1},-\frac{2}{3}) & \rightarrow & \bar{u}_3 \\ \bar{l} & \rightarrow & (\mathbf{3},\mathbf{1},-\frac{2}{3}) + (\mathbf{1},\mathbf{2},-\frac{1}{2}) & \rightarrow & \overline{T} \end{array}$$

<ロ> <四> <回> <三> <三> <三> <三> <三</p>

With a certain choice of parameters (couplings, gaugino masses, VEVs):

 $\hat{g}_5 = 1.2, \ y_1 = 1.5, \ y_2 = 1.5, \ M_5 = 0.7 \text{ TeV}, \ \mu_3 = 2 \text{ TeV}, \ \mu_2 = 5 \text{ TeV}, \ \mu_H = 0.3 \text{ TeV}, \ f_2 = 1.5 \text{ TeV}, \ f_2 = 1.7 \text{ TeV}, \ f_3 = 0.6 \text{ TeV}$

 \rightarrow yukawan vertex is mainly $\hat{g}_5 H_d^{\dagger} \lambda \overline{T}$.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 < の < 0