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”Noncommutative“ and ”nonassociative“ geometry

• The spacetime M can be characterized by functions
f : M → R on it and how to compose them (algebra)

• Points in M are characterized by coordinates Xi : M → R

• Product of algebra of functions usually (f · g)(x) = f(x) g(x)

Noncommutative geometry

• Product on functions noncommutative, i.e. f ⋆ g 6= g ⋆ f

• In particular, coordinates noncommutative; [Xi, Xj ] 6= 0

• Spacetime does not consist of points but, say, matrices

Nonassociativity

• A nonassociative product, i.e. f ⋆ (g ⋆ h) 6= (f ⋆ g) ⋆ h

• [Xi, [Xj , Xk]] + cycl. 6= 0, i.e. Jacobi identity fails

• Right objects to replace points?
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√
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The Bosonic String in Background Fields

Bosonic string action with Kalb-Ramond field

S =
1

2πα′

∫

Σ
d2z
√
h (Gµν(X) +Bµν(X)) ∂Xµ ∂Xν

Properties

• The spacetime is characterized geometrically by the metric G

and a torsion H = dB – the backgrounds

• Quantization spoils Weyl invariance ⇒ recovered by
consistency equations relating G and H

Some spacetime directions Tn with isometries: T-duality

• T-duality changes background fields ⇒ very different
spacetime (non-)geometries

• Equivalent quantum theories
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Dirac quantisation along the D-brane [Chu,Ho (1999)]

[

Xa(τ, σ = 0), Xb(τ, σ′ = 0)
]

= 2πiα′ (B−1)ab =: iθab
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Emergence of noncommutative geometry

Open string with B = const. governed by S with ∂Σ 6= ∅.
Dirac quantisation along the D-brane [Chu,Ho (1999)]

[

Xa(τ, σ = 0), Xb(τ, σ′ = 0)
]

= 2πiα′ (B−1)ab =: iθab

CFT correlation functions: NC parameter as phase [Seiberg,Witten

(1999)]

• Related to correlators of the free theory by a phase factor

Cn
g,θ = exp

[

− i
2

∑n
i<j θab pia p

j
b

]

Cn
g,θ=0

• Phase captured by Moyal star-product on functions

(f1⋆· · ·⋆fn)(X) := e

i
2
∑n

i<j θ
ab ∂

∂Xa
i

∂
∂Xb

j f1(X1) . . . fn(Xn)

∣

∣

∣

∣

∣

Xi=X
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The Moyal star-product

Properties of the Moyal star-product [Cornalba,Schiappa (2001)]

• Captures non-vanishing commutator

• ⋆n can be obtained by successive application of ⋆2.

• If dφ = 0 then ⋆ is associative. Otherwise ⋆ is nonassociative.

• The phase is independent of worldsheet coordinates ⇒
genuine spacetime property
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The Moyal star-product

Properties of the Moyal star-product [Cornalba,Schiappa (2001)]

• Captures non-vanishing commutator

• ⋆n can be obtained by successive application of ⋆2.

• If dφ = 0 then ⋆ is associative. Otherwise ⋆ is nonassociative.

• The phase is independent of worldsheet coordinates ⇒
genuine spacetime property

We have seen

The end-points of open strings detect noncommutative geometry
on D-branes characterized by ⋆-product.

The guiding principle

Product of the algebra of functions on the spacetime was deduced
from the structure of CFT correlation functions.
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Closed string with H-flux
[R.Blumenhagen, A.Deser, D.Lüst, E.Plauschinn, F.R. (2011)]; arXiv:1106.0316 [hep-th]

The stage: Closed string (Σ = S2) with

• Three spacetime dimensions compactified on flat T3

• Bab = HabcX
c with Habc constant H-flux ⇒ more difficult

than open string case since constant B can be ”gauged away“

• Admissible background: only linear in H
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Closed string with H-flux
[R.Blumenhagen, A.Deser, D.Lüst, E.Plauschinn, F.R. (2011)]; arXiv:1106.0316 [hep-th]

The stage: Closed string (Σ = S2) with

• Three spacetime dimensions compactified on flat T3

• Bab = HabcX
c with Habc constant H-flux ⇒ more difficult

than open string case since constant B can be ”gauged away“

• Admissible background: only linear in H

What was done?

• We constructed a CFT for the system and computed the basic
three-point function
〈

X a(z1, z1)X b(z2, z2)X c(z3, z3)
〉

H

R =θabc
[

L
(

z12
z13

)

∓L
(

z12
z13

)]

with R denoting the R-flux background

• This can be used to compute CFT correlation functions
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(Non-)geometry of R-flux background

The R-flux

• Three (formal) T-dualities on T
3 with H-flux ⇒

non-geometric R-flux background [Shelton,Taylor,Wecht (2005)]

• Basic three-point function implies a non-vanishing Jacobi
identity for the spacetime coordinates only for R-flux ⇒
nonassociative geometry [Blumenhagen,Plauschinn (2010)]
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(Non-)geometry of R-flux background

The R-flux

• Three (formal) T-dualities on T
3 with H-flux ⇒

non-geometric R-flux background [Shelton,Taylor,Wecht (2005)]

• Basic three-point function implies a non-vanishing Jacobi
identity for the spacetime coordinates only for R-flux ⇒
nonassociative geometry [Blumenhagen,Plauschinn (2010)]

A phase in CFT correlation functions

Since well understood, we scattered tachyons V∓ in H- resp.
R-flux background. A non-trivial phase emerges upon permuting
operator insertions only for the R-flux:

C(V∓)σ(n)θ = exp
(

i
1−sgn(σ)

2 π2 θabc
∑

i<j<k

pi,apj,bpk,c

)

C(V∓)nθ
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A nonassociative product

Properties of the phase

• Vanishes after imposing momentum conservation

• Reflects (off-shell) spacetime property

Phase captured by the product

(f1△n . . .△nfn)(x) :=

exp
(

π2

2 θabc
n
∑

i<j<k

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

)

f1(x1) . . . fn(xn)
∣

∣

∣

xi=x
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A nonassociative product

Properties of the phase

• Vanishes after imposing momentum conservation

• Reflects (off-shell) spacetime property

Phase captured by the product

(f1△n . . .△nfn)(x) :=

exp
(

π2

2 θabc
n
∑

i<j<k

∂
∂xa

i

∂
∂xb

j

∂
∂xc

k

)

f1(x1) . . . fn(xn)
∣

∣

∣

xi=x

An ”intrinsically“ nonassociative product

•△n cannot be obtained from successive application of △3
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Conclusion

We have

• found explicit hints for nonassociative geometries in string
theory

• gained explicit insights on the structure of poorly understood
R-flux backgrounds

• hints that generic string backgrounds correspond to more
complicated (non-)geometries
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Conclusion

We have

• found explicit hints for nonassociative geometries in string
theory

• gained explicit insights on the structure of poorly understood
R-flux backgrounds

• hints that generic string backgrounds correspond to more
complicated (non-)geometries

Thank you!
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Backup
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Background details

String beta-functionals [Callan,Friedan,Martinec,Perry (1985)]

βG
µν = α′Rµν −

α′

4
HµσρH

σρ
ν +O(α′2) = 0

βB
µν =

α′

2
∇σHσµν +O(α′2) = 0

βφ
µν =

D − 26

6
− α′

24
Hµνσ H

µνσ +O(α′2) = 0

with H = dB.
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T-duality

To obtain D = 4 theory surplus dimensions will be compactified:

M = R
1,3 × T

22

If the compact manifold has isometries: T-duality [Buscher (1987);

Roček,Verlinde (1992)]

• String has momentum p = n
R

and winding w = mR
α′ along a

cycle; p
T←−→ w

• CFT point of view: X = XL +XR
T−−→ X = XL −XR

• T-dual theories are equivalent quantum theories

• The dual theories have very different spacetime
(non-)geometries
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CFTH

Consistency equations predict CFT at O(H) ⇒ CFTH

• Anti-/holomorphic currents

J a(z) := i∂Xa(z, z)− i

2
Habc ∂X

b(z)Xc
R(z)

J a
(z) := i∂Xa(z, z)− i

2
HabcX

b
L(z) ∂X

c(z)

• Chiral three-point functions from conformal perturbation

theory
〈

J a(z1)J b(z2)J c(z3

〉

= − i(α′)2

8

Habc

z12 z13 z23
〈

J a
(z1)J b

(z2)J c
(z3

〉

= +
i(α′)2

8

Habc

z12 z13 z23

• Current algebra

J a(z)J b(w) =
α′

2

δab

(z − w)2
− i

α′

4

Hab
c

z − w
J c(w) + reg.
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Tachyon scattering

Tachyon vertex operator

V(z, z) =:exp (ikL · XL + ikR · XR) :

is a vertex operator of the perturbed theory and corresponds to the
degenerate groundstate |kL, kR〉 provided Ha

bcp
bwc = 0.

Correlation functions

• Structure of n-tachyon correlator

C(V∓)nθ = exp
{

− iθabc
∑

i<j<k

pi,apj,bpk,c

[

L
( zij

zik

)

∓ L
( zij

zik

)]}

× C(V∓)nθ=0

• Permuting the operator insertions

C(V∓)σ(n)θ = exp
(

iǫ
1−sgn(σ)

2 π2 θabc
∑

i<j<k

pi,apj,bpk,c

)

C(V∓)nθ
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