FeynArts and FormCalc by Example

SM and BSM Tools for Loop Calculations

Thomas Hahn, MPP

Plus:

- Phase-space integration,
- Treatment of unstable particles,
- Numerical difficulties,

1. Draw all possible tupes of diagrams with the given number of loops and external legs

Topological task, no physics input needed*

* Well, almost: need to know allowed adjacencies in physics model, e.g. renormalizable theories have at most 3 - and 4-point vertices.

2. Figure out what particles can run on each type of diagram

Combinatorial task, requires physics input (model)

In this case, in the SM, three of the topologies were not realized though one was realized multiply.
Note further that the e-e-scalar couplings are suppressed by m_{e}^{2} / M_{W}^{2} and thus usually neglected. These are selections one would typically make at this stage, i.e. diagrammatically.

3. Translate the diagrams into formulas by applying the Feynman rules

$$
=\underbrace{\left\langle v_{1}\right| i e \gamma^{\mu}\left|u_{2}\right\rangle}_{\text {left vertex }} \underbrace{\frac{g_{\mu \nu}}{\left(k_{1}+k_{2}\right)^{2}}}_{\text {propagator }} \underbrace{\left\langle u_{4}\right|\left(-\frac{2}{3} i e \gamma^{\nu}\right)\left|v_{3}\right\rangle}_{\text {right vertex }}
$$

Database look-up

4. Contract the indices, take the traces, etc.

Also, compute the fermionic matrix elements, e.g. by squaring and taking the trace:

$$
\begin{aligned}
\left|F_{1}\right|^{2} & =\operatorname{Tr}\left\{\left(\not \not k_{1}-m_{e}\right) \gamma_{\mu}\left(\nmid k_{2}+m_{e}\right) \gamma_{\nu}\right\} \operatorname{Tr}\left\{\left(\not \not k_{4}+m_{t}\right) \gamma^{\mu}\left(\nmid k_{3}-m_{t}\right) \gamma^{\nu}\right\} \\
& =\frac{1}{2} s^{2}+s t+\left(m_{e}^{2}+m_{t}^{2}-t\right)^{2}
\end{aligned}
$$

Algebraic simplification

5. Write the results up as aagram (put favourite language here)

5a. Debug that program

6. Run it to produce numerical values

Programming

Thanks to

 and
 (and many others) we have a Recipe for an ARBITRARY Feynman diagram up to one loop

(1)	Draw all possible types of diagrams	topological task
(2)	Figure out what particles can run on each type of diagram	combinatorical task
(3)	Translate the diagrams into formulas by applying the Feynman rules	database look-up
(4)	Contract the indices, take the traces, etc.	algebraic simplification
	Write up the results as a computer program	programming
	Run the program to get numerical results	waiting

- Very different tasks at hand.
- Some objects must/should be handled symbolically, e.g. tensorial objects, Dirac traces, dimension (D vs. 4).
- Reliable results required even in the presence of large cancellations.
- Fast evaluation desirable (e.g. for Monte Carlos).

Hybrid Programming Techniques necessary
Sumbolic monipulation (a.k.a. Computer Algebra) for the
structural and algebraic operations.
Compiled high-level language (e.g. Fortran) for the numerical evaluation.

Diagram Generation:

- Create the topologies
- Insert fields
- Apply the Feynman rules
- Paint the diagrams

Algebraic Simplification:

- Contract indices
- Calculate traces
- Reduce tensor integrals
- Introduce abbreviations

Numerical Evaluation:

- Convert Mathematica output to Fortran code
- Supply a driver program

Symbolic manipulation (Computer Algebra) for the structural and algebraic operations.

Compiled high-level
language (Fortran) for the numerical evaluation.

- Implementation of the integrals

LoopTools

Cross-sections, Decay rates, ...

Walk through the general setup of these programs and show some perhaps non-standard applications.

- 'Standard Candle' - $e^{+} e^{-} \rightarrow t \bar{t}$,
- Resumming a coupling - Δ_{b},
- Example from flavour physics $-\Delta M_{s}$.

Generic level, e.g. F, F, S

$$
C\left(F_{1}, F_{2}, S\right)=G_{L} \mathbb{P}_{L}+G_{R} \mathbb{P}_{R} \quad \mathbb{P}_{R, L}=\left(\mathbb{1} \pm \gamma_{5}\right) / 2
$$

Kinematical structure completely fixed, most algebraic simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. $-\mathrm{F}[2], \mathrm{F}[1], \mathrm{S}[3]$
$\bar{\ell}_{i} \nu_{j} G: \quad G_{L}=-\frac{\mathrm{iem} m_{\ell, i}}{\sqrt{2} \sin \theta_{w} M_{W}} \delta_{i j}, \quad G_{R}=0$
Coupling fixed except for i, j (can be summed in do-loop).
Particles level, e.g. $-F[2,\{1\}], F[1,\{1\}], S[3]$
insert fermion generation $(1,2,3)$ for i and j

$$
\begin{aligned}
=\text { FeynAmp }\left[\begin{array}{l}
\text { identifier }, \\
\\
\\
\\
\text { loop momenta, }, \\
\text { generic amplitude, }, \\
\text { insertions] }
\end{array}\right.
\end{aligned}
$$

GraphID[Topology == 1, Generic == 1]

$$
=\text { FeynAmp [identifier, }
$$

loop momenta,generic amplitude, insertions]

Integral [q1]

= FeynAmp [identifier, loop moment. generic amplitude, insertions]
\{ Mass [S [Gen3]], Mass [S[Gen4]], $\mathrm{G}_{\mathrm{SsV}}^{(0)}[(\operatorname{Mom}[1]-\operatorname{Mom}[2])[\mathrm{KI1}[3]]]$, $\mathrm{G}_{\text {SSV }}^{(0)}[(\operatorname{Mom}[1]-\operatorname{Mom}[2])[K I 1[3]]]$, RelativeCF \} ->
Insertions [Classes] [\{MW, MW, I EL, -I EL, 2\}]

```
\begin{feynartspicture}(150,150)(1,1)
\FADiagram{}
\FAProp(6.,10.)(14.,10.)(0.8,){ScalarDash}{-1}
\FALabel(10. ,5.73)[t]{$G$}
\(\backslash\) FAProp (0., 10.) (6. , 10.) (0., ) \{Sine \(\}\{0\}\)
\(\backslash\) FALabel (3., 8.93) [t] \{\$\gamma\$\}
```

\backslash FAVert (6., 10.) \{0\}
\backslash FAVert (14., 10.) \{0\}
\end\{feynartspicture\} }

Technically: uses its own PostScript prologue.

The elements of the diagram are easy to recognize and it is straightforward to make changes e.g. to the label text using any text editor. It is less straightforward, however, to alter the geometry of the diagram, i.e. to move vertices and propagators.

The FeynEdit tool lets the user:

- copy-and-paste the criex X code into the lower panel of the editor,
- visualize the diagram,
- modify it using the mouse, and finally
- copy-and-paste it back into the text.

Or, What if FeynArts' selection functions are not enough. Observe the structure of inserted topologies:

```
TopologyList[__] [t t , t2, ...]
ti: Topology[_][_-] -> Insertions[Generic][g1, g2, ...]
gi: Graph[__] [_-] -> Insertion[Classes][c
ci: Graph[_-] [_-] -> Insertion[Particles][p1, p2, ...]
```


Example: Select the diagrams with only fermion loops.

```
FermionLoop[t:TopologyList[_-_][__]] := FermionLoop/@ t
FermionLoop[(top:Topology[_][_-]) -> ins:Insertions[Generic][__]] :=
    top -> TestLoops[top]/@ ins
TestLoops[top_][gi_ -> ci_] := (gi -> ci) /;
    MatchQ[Cases[top /. List@@ gi,
        Propagator[Loop[_]][v1_, v2_, field_] -> field], {F..}]
```

TestLoops [_] [_] := Sequence[]

The amplitudes output by FeynArts so far are in no good shape for direct numerical evaluation. Some objects must/should be handled symbolically, e.g. tensorial objects, Dirac traces, dimension (D vs. 4).

- contract indices as far as possible,
- evaluate fermion traces,
- perform the tensor reduction,
- add local terms arising from D.(divergent integral),
- simplify open fermion chains,
- simplify and compute the square of SU(N) structures,
- "compactify" the results as much as possible.

FormCalc

A typical term in the output looks like

\square	$=$ loop integral \quad = kinematical variables
	$=$ constants
\square	$=$ automatically introduced abbreviations

Outright factorization is usually out of question.

 Abbreviations are necessary to reduce size of expressions.$$
\begin{gathered}
\text { AbbSum29 = Abb2 }+ \text { Abb22 }+\mathrm{Abb} 23+\mathrm{Abb} 3 \\
\text { Abb22 }=\text { Pair1 Pair3 Pair6 } \\
\text { Pair3 }=\operatorname{Pair}[\mathrm{e}[3], \mathrm{k}[1]]
\end{gathered}
$$

The full expression corresponding to AbbSum29 is

$$
\begin{aligned}
& \text { Pair [e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] + } \\
& \text { Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] + } \\
& \text { Pair [e[1], e [2]] Pair[e[3], k[1]] Pair[e[4], k[2]] + } \\
& \text { Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]] }
\end{aligned}
$$

FORM is able to handle very large expressions. To produce (pre-)simplified expressions, however, terms have to be wrapped in functions, to avoid immediate expansion:

$$
\begin{array}{ll}
a *(b+c) & \rightarrow a * b+a * c \\
a * f(b+c) & \rightarrow a * f(b+c)
\end{array}
$$

The number of terms in a function is rather limited in FORM: on 32-bit systems to 32767 .
Dilemma: FormCalc gets more sophisticated in pre-simplifying amplitudes while users want to compute larger amplitudes. Thus, recently many 'overflow' messages from FORM.
Solution: Send pre-simplified generic amplitude via external channel to Mathematica for introducing abbreviations. Significant reduction in size of intermediate expressions.

FORM \rightarrow Mathematica:

```
+Den[U,MU2] *(
    -8*SUNSum[Col5, 3] *SUNT[Glu3,Col5,Col2]*SUNT [Glu4, Col1, Col5] *mul [Alfas*Pi]*
    abb[fme[WeylChain[DottedSpinor[k1,MU, -1] , 6, Spinor[k2,MU, 1]]]*ec3.ec4
    -1/2*fme[WeylChain[DottedSpinor[k1,MU, -1] , 6, ec3, ec4,Spinor[k2,MU , 1]]]
    +fme[WeylChain[DottedSpinor[k1,MU, -1] , 7,Spinor[k2,MU, 1]]]*ec3.ec4
    -1/2*fme[WeylChain[DottedSpinor[k1, MU, -1] , 7, ec3, ec4,Spinor[k2, MU, 1]]]]*MU
    -4*SUNSum[Col5,3]*SUNT[Glu3,Col5,Col2]*SUNT[Glu4,Col1, Col5]*mul[Alfas*Pi]*
    abb[fme[WeylChain[DottedSpinor[k1,MU,-1] ,6,ec3,ec4,k3,Spinor[k2,MU,1]]]
    -2*fme[WeylChain[DottedSpinor[k1,MU, -1], 6, ec4,Spinor[k2,MU, 1]]]*ec3.k2
    -2*fme[WeylChain[DottedSpinor[k1,MU, -1] , 6,k3,Spinor[k2,MU,1]]]*ec3.ec4
    +fme[WeylChain[DottedSpinor[k1,MU,-1],7,ec3,ec4,k3,Spinor[k2,MU,1]]]
    -2*fme[WeylChain[DottedSpinor[k1,MU, -1] , 7, ec4,Spinor[k2,MU, 1]]]*ec3.k2
    -2*fme [WeylChain[DottedSpinor[k1,MU, -1] , 7,k3,Spinor [k2,MU, 1]]]*ec3.ec4]
    +8*SUNSum[Col5, 3] *SUNT[Glu3,Col5,Col2]*SUNT[Glu4,Col1,Col5] *mul[Alfas*MU*Pi]*
    abb[fme [WeylChain[DottedSpinor[k1,MU,-1],6,Spinor[k2,MU,1]]]*ec3.ec4
    -1/2*fme[WeylChain[DottedSpinor[k1,MU, -1] , 6, ec3, ec4,Spinor[k2,MU, 1]]]
    +fme[WeylChain[DottedSpinor[k1,MU, -1], 7, Spinor[k2, MU, 1]]]*ec3.ec4
    -1/2*fme[WeylChain[DottedSpinor[k1,MU, -1],7,ec3,ec4,Spinor[k2,MU, 1]]]] )
```


Mathematica \rightarrow FORM:

$-4 * \operatorname{Den}(\mathrm{U}, \mathrm{MU} 2) *$ SUNSum (Col5, 3) *SUNT (Glu3, Col5, Col2) *SUNT (Glu4, Col1 , Col5) * AbbSum5*Alfas*Pi

The Abbreviate Function allows to introduce abbreviations for arbitrary (sub-)expressions and extends the advantage of categorized evaluation.
The subexpressions are retrieved with Subexpr [].
Abbreviations and subexpressions from an earlier FormCalc session must be registered before use:

RegisterAbbr[abbr]
RegisterSubexpr [subexpr]

- Abbreviations are recursively defined in several levels.
- When generating Fortran code, FormCalc introduces another set of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time. It is key to a decent performance that the abbreviations are separated into different Categories:

- Abbreviations that depend on the helicities,
- Abbreviations that depend on angular variables,
- Abbreviations that depend only on \sqrt{s}.

Correct execution of the categories guarantees that almost no redundant evaluations are made and makes the generated code essentially as fast as hand-tuned code.

CPU-time (rough)

Mentioning Fortran 77 as the programming language in many circles draws a "Weren't the dinosaurs extinct?" response.

But consider:

- Fortran was designed for 'number crunching,' i.e. efficient evaluation of large formulas.
- Good and free compilers are available.
- Fortran is still widely used in theoretical physics.
- The code is generated, so largely 'invisible' for the user.
- Linking Fortran 77 to $\mathrm{C}^{2} \mathrm{C}_{++}$is pretty stroightforward (particularly inside gcc), so is in some sense a 'smallest common denominator.'
- Extensible: default code serves (only) as an example. Other 'Frontends' can be supplied, e.g. HadCalc, sofox.
- Modular: Iargely autonomous pieces of code provide
- kinematics,
- model initialization,
- convolution with PDFs.
- Re-usable: external program need only call ProcessIni (to set up the process) and ParameterScan (to set off the calculation).
- Interactive: Mathematica interface provides Mathematica function for cross-section/decay rate.
- Parallel: built-in distribution of parameter scans.

An amplitude containing external fermions has the form

$$
\mathcal{M}=\sum_{i=1}^{n_{F}} c_{i} F_{i} \quad \text { where } \quad F_{i}=(\text { Product of })\langle u| \Gamma_{i}|v\rangle .
$$

$n_{F}=$ number of fermionic structures.
Textbook procedure: Trace Technique

$$
|\mathcal{M}|^{2}=\sum_{i, j=1}^{n_{F}} c_{i}^{*} c_{j} F_{i}^{*} F_{j}
$$

where $\quad F_{i}^{*} F_{j}=\langle v| \bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle=\operatorname{Tr}\left(\bar{\Gamma}_{i}|u\rangle\langle u| \Gamma_{j}|v\rangle\langle v|\right)$.

PRO: Trace technique is independent of any representation.
con: For $n_{F} F_{i}$'s there are $n_{F}^{2} F_{i}^{*} F_{j}$'s.
Things get worse the more vectors are in the game: multi-particle final states, polarization effects . . .
Essentially $n_{F} \sim$ (\# of vectors)! because all combinations of vectors can appear in the Γ_{i}.

Solution: Use Weyl-van der Waerden spinor formalism to compute the F_{i} 's directly.

Define Sigma matrices and 2-dim. Spinors as

$$
\begin{aligned}
& \sigma_{\mu}=(\mathbb{1},-\vec{\sigma}), \\
& \bar{\sigma}_{\mu}=(\mathbb{1},+\vec{\sigma}),
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\left. u\right|_{4 \mathrm{~d}}\right. & \equiv\left(\left\langle\left.u_{+}\right|_{2 \mathrm{~d}},\left\langle\left. u_{-}\right|_{2 \mathrm{~d}}\right),\right.\right. \\
|v\rangle_{4 \mathrm{~d}} & \equiv\binom{\left|v_{-}\right\rangle_{2 \mathrm{~d}}}{\left|v_{+}\right\rangle_{2 \mathrm{~d}}} .
\end{aligned}
$$

Using the chiral representation it is easy to show that every chiral 4 -dim. Dirac chain can be converted to a single 2-dim. sigma chain:

$$
\begin{aligned}
\langle u| \mathbb{P}_{L} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle & =\left\langle u_{-}\right| \bar{\sigma}_{\mu} \sigma_{\nu} \cdots\left|v_{ \pm}\right\rangle, \\
\langle u| \mathbb{P}_{R} \gamma_{\mu} \gamma_{\nu} \cdots|v\rangle & =\left\langle u_{+}\right| \sigma_{\mu} \bar{\sigma}_{\nu} \cdots\left|v_{\mp}\right\rangle .
\end{aligned}
$$

With the Fierz identities for sigma matrices it is possible to remove all Lorentz contractions between sigma chains, e.g.

$$
\langle A| \sigma_{\mu}|B\rangle\langle C| \bar{\sigma}^{\mu}|D\rangle=2\langle A \mid D\rangle\langle C \mid B\rangle
$$

- Objects (arrays): $\quad\left|u_{ \pm}\right\rangle \sim\binom{u_{1}}{u_{2}}, \quad(\sigma \cdot k) \sim\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
- Operations (functions):

$$
\begin{array}{rlr}
\langle u \mid v\rangle & \sim\left(\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right) \cdot\binom{v_{1}}{v_{2}} & \mathrm{SxS} \\
(\stackrel{\rightharpoonup}{\sigma} \cdot k)|v\rangle & \sim\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\binom{v_{1}}{v_{2}} & \mathrm{VxS}, \mathrm{BxS}
\end{array}
$$

Sufficient to compute any sigma chain:
$\langle u| \sigma_{\mu} \bar{\sigma}_{\nu} \sigma_{\rho}|v\rangle k_{1}^{\mu} k_{2}^{\nu} k_{3}^{\rho}=\operatorname{SxS}\left(u, \operatorname{VxS}\left(k_{1}, \operatorname{BxS}\left(k_{2}, \operatorname{VxS}\left(k_{3}, v\right)\right)\right)\right)$

- Polarization does not 'cost' extra:
= Get spin physics for free.
- Better numerical stability because components of k^{μ} are arranged as 'small' and 'large' matrix entries, viz.

$$
\sigma_{\mu} k^{\mu}=\left(\begin{array}{cc}
k_{0}+k_{3} & k_{1}-\mathrm{i} k_{2} \\
k_{1}+\mathrm{i} k_{2} & k_{0}-k_{3}
\end{array}\right)
$$

Large cancellations of the form $\sqrt{k^{2}+m^{2}}-\sqrt{k^{2}}$ when $m \ll k$ are avoided: better precision for mass effects.

The

turns the generated stand-alone Fortran code into a Mathematica function for evaluating the cross-section or decay rate as a function of user-selected model parameters.

The benefits of such a function are obvious, as the whole instrumentarium of Mathematica commands can be applied to them. Just think of

```
FindMinimum[sigma[TB, MAO], {{TB, 5}, {MAO, 250}}]
ContourPlot[sigma[TB, MAO], {TB, 5}, {MAO, 250}]
```


The changes to the code are minimal.

Example line in run. F for Stand-alone Fortran code:

$$
\text { \#define LOOP1 do } 1 \mathrm{~TB}=5,50,5
$$

Change for the Mathematica Interface:

```
\#define LOOP1 call MmaGetReal (TB)
```

The variable TB is 'imported' from Mathematica now, i.e. the cross-section function in Mathematica becomes a function of TB hereby.

The user has full control over which variables are 'imported' from Mathematica and which are set in Fortran.

Similar to the MmaGetReal invocations, the Fortran program can also 'export' variables to Mathematica.

For example, the line that prints a parameter in the stand-alone code is

```
\#define PRINT1 SHOW "TB", TB
```

becomes

> \#define PRINT1 call MmaPutReal("TB", TB)
for the Mathematica Interface and transmits the value of TB to Mathematica.

Once the changes to run.F are made, the program run is compiled as usual:

```
./configure make
```

It is then loaded in Mathematica with
Install["run"]
Now a Mathematica function of the same name, run, is available. There are two ways of invoking it:

Compute a differential cross-section at $\sqrt{s}=\mathrm{sqrtS}$: run[sqrtS, arg1, arg2, ...]

Compute a total cross-section for sqrtSfrom $\leqslant \sqrt{s} \leqslant$ sqrtSto: run[\{sqrtSfrom, sqrtSto\}, arg1, arg2, ...]

The output of the function run is an integer which indicates how many records have been transferred. For example:

```
Para[1] = {TB -> 5., MAO -> 250.}
Data[1] = {DataRow[{500.}, {0.0539684, 0.}, {2.30801 10^-21, 0.}],
    DataRow[{510.}, {0.0515943, 0.}, {4.50803 10^-22, 0.}]}
```

Para contains the parameters exported from the Fortran code. Data contains:

- the independent variables, here e.g. $\{500\}=.\{\sqrt{s}\}$,
- the cross-sections,
here e.g. $\{0.0539684,0\}=.\left\{\sigma_{\text {tot }}^{\text {tree }}, \sigma_{\text {tot }}^{\text {H-loop }}\right\}$, and
- the integration errors, here e.g. $\left\{2.3080110^{\wedge}-21,0.\right\}=\left\{\Delta \sigma_{\text {trot }}^{\text {tree }}, \Delta \sigma_{\text {tot }}^{\text {-loop }}\right\}$.

With the preprocessor definitions in run.F one can either

- assign a parameter a fixed value, as in
\#define LOOP1 TB = 1.5D0
- declare a loop over a parameter, as in

$$
\text { \#define LOOP1 do } 1 \text { TB = 2,30,5 }
$$

which computes the cross-section for TB values of 2 to 30 in steps of 5.

Main Program:

LOOP1

LOOP2
(calculate cross-section)
1 continue

Scans are "embarrassingly parallel" - each pass of the loop can be calculated independently. How to distribute the iterations automatically if the loops are a) user-defined b) usually nested?

Solution: Introduce a serial number

```
subroutine ParameterScan( range )
integer serial
serial = 0
LO0P1
LO0P2
serial = serial + 1
if( serial # range ) goto 1
(calculate cross-section)
1 continue
    end
```

Distribution on N machines is now simple:

- Send serial numbers $1, N+1,2 N+1, \ldots$ on machine 1 ,
- Send serial numbers $2, N+2,2 N+2, \ldots$ on machine 2 , etc.

Parameter scans can automatically be distributed on a cluster of computers:

- The machines are declared in a file . submitrc, e.g.

```
# Optional: Nice to start jobs with
nice 10
# i7
pcl301 4
pcl301a 4
pcl305 4
# Dual AMD
pcl247b 2
pcl321 2
```

- The command line for distributing a job is exactly the same except that "submit" is prepended, e.g.

```
submit run uuuu 0,1000
```

FormCalc's code-generation functions are now public and disentangled from the rest of the code. They can be used to write out an arbitrary Mathematica expression as optimized Fortran code:

- handle = OpenFortran["file.F"]
opens file.F as a Fortran file for writing,
- WriteExpr [handle, \{var -> expr, ...\}]
writes out Fortran code which calculates expr and stores the result in var,
- Close [handle]
closes the file again.
- Expressions too large for Fortran are split into parts, as in

$$
\begin{aligned}
& \text { var }=\text { part } 1 \\
& \text { var }=\text { var }+ \text { part } 2
\end{aligned}
$$

- High level of optimization, e.g. common subexpressions are pulled out and computed in temporary variables.
- Many ancillary functions, e.g.

PrepareExpr, OnePassOrder, SplitSums, \$Prefix, CommonDecl, SubroutineDecl, etc. make code generation versatile and highly automatable, such that the resulting code needs few or no changes by hand.

One has to set up, once and for all, a

- Generic Model File (seldomly changed) containing the generic part of the couplings,

Example: the FFS coupling

$$
C(F, F, S)=G_{L} \mathbb{P}_{L}+G_{\mathbb{R}} \mathbb{P}_{R}=\vec{G} \cdot\binom{\mathbb{P}_{L}}{\mathbb{P}_{R}}
$$

```
AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]]
== G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .
    { NonCommutative[ ChiralityProjector[-1] ],
        NonCommutative[ ChiralityProjector[+1] ] }
```


One has to set up, once and for all, a

- Classes Model File (for each model) declaring the particles and the allowed couplings

Example: the $\bar{\ell}_{i} \nu_{j} G$ coupling in the Standard Model

$$
\begin{aligned}
& \vec{G}\left(\bar{\ell}_{i}, \nu_{j}, G\right)=\binom{G_{-}}{G_{+}}=\binom{-\frac{\mathrm{iem} \ell_{\ell, i}}{\sqrt{2} \sin \theta_{w} M_{W}} \delta_{i j}}{0} \\
& \mathrm{C}[-\mathrm{F}[2,\{\mathrm{i}\}], \mathrm{F}[1,\{\mathrm{j}\}], \mathrm{S}[3]] \\
& ==\begin{array}{c}
\{-\mathrm{I} \operatorname{EL} \operatorname{Mass}[\mathrm{~F}[2,\{\mathrm{i}\}]] /(S q r t[2] \text { SW MW) IndexDelta[i, j]\}, } \\
\{0\}\}
\end{array}
\end{aligned}
$$

Model Files presently available for FeynArts:

- SM [W/QCD], normal and background-field version. All one-loop counter terms included.
- MSSM [w/QCD]. Counter terms by T. Fritzsche.
- ModelMaker utility generates Model Files from the Lagrangian.
- "3rd-party packages" FeynRules and LanHEP generate Model Files for FeynArts and others.
- SARAH package derives SUSY Models.

FeynArts distinguishes

- Basic Model Files and
- Partial (Add-On) Model Files.

Basic Model Files, e.g. SM.mod, MSSM.mod, can be modified by Add-On Model Files. For example,

$$
\text { InsertFields [..., Model -> \{"MSSMQCD", "FV"\}] }
$$

This loads the Basic Model File MSSMQCD.mod and modifies it through the Add-On FV.mod (non-minimal flavour violation).

Model files can thus be built up from several parts.

Or, How to efficiently make changes in an existing model file.

Bad: Copy the model file, modify the copy. - Why?

- It is typically not very transparent what has changed.
- If the original model file changes (e.g. bug fixes), these do not automatically propagate into the derivative model file.

Better: Create a new model file which reads the old one and modifies the particles and coupling tables.

- M\$ClassesDescription = list of particle definitions,
- M\$CouplingMatrices = list of couplings.

Example: Introduce

 for the $b-\bar{b}-h_{0}$ and $b-\bar{b}-H_{0}$ Yukawa couplings in the MSSM.```
EnhCoup[(lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_] :=
 lhs == Hff[h,g] rhs
EnhCoup[other_] = other
M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices
```

To see the effect, make a printout with the WriteTeXFile utility of FeynArts.

The Hff $[\mathrm{h}, \mathrm{g}]$ can be defined to include e.g. resummation effects, as in double precision $\operatorname{Hff}(2,3)$
data Hff /6*1/
$\operatorname{Hff}(1,3)=1-\mathrm{CA} /(S A * T B) * D e l t a \_b$
$\operatorname{Hff}(2,3)=1+\mathrm{SA} /(\mathrm{CA} * T B) *$ Delta_b

FeynArts can automatically linear-combine fields, i.e. one can specify the couplings in terms of gauge rather than mass eigenstates. For example:

```
M$ClassesDescription = { ...,
 F[11] = {...,
 Indices -> {Index[Neutralino]},
 Mixture -> ZNeu[Index[Neutralino],1] F[111] +
 ZNeu[Index[Neutralino],2] F[112] +
 ZNeu[Index[Neutralino],3] F[113] +
 ZNeu[Index[Neutralino],4] F[114]} }
```

Since F[111]...F[114] are not listed in M\$CouplingMatrices, they drop out of the model completely.

## Higher-order mixings can be added, too:

```
M$ClassesDescription = { ...,
 S[1] = {...},
 S[2] = {...},
 S[10] == {...,
 Indices -> {Index[Higgs]},
 Mixture -> UHiggs[Index[Higgs],1] S[1] +
 UHiggs[Index[Higgs], 2] S[2],
 InsertOnly -> {External, Internal}} }
```

This time, $S[10]$ and $S[1], S[2]$ appear in the coupling list (including all mixing couplings) because all three are listed in M\$CouplingMatrices.

Due to the Insert0nly, $\mathrm{S}[10]$ is inserted only on tree-level parts of the diagram, not in loops.

## Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh
Shell Magic
math << _EOF_ start Here document (note the \)
 << FeynArts'
 << FormCalc'
 top = CreateTopologies[...];
EOF
end Here document
```

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:
\#! /bin/sh
math -run "arg1=\$1" -run "arg2=\$2" ... << \END

END

- Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement, \#! /bin/sh -x

## Or, How to get things the Standard Setup won't give you. Example: extract the Wilson coefficients for $b \rightarrow s \gamma$.

```
tops = CreateTopologies[1, 1 -> 2]
ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]
vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]
mat[p_Plus] := mat/@ p
mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=
 I/(2 m1) mat[r DiracChain[sigmunu[om]]] +
 2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]
mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=
 r 07[om]/(EL MB/(16 Pi^2))
mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=
 r 08[om]/(GS MB/(16 Pi^2))
coeff = Plus@@ vert //. abbr /. Mat -> mat
c7 = Coefficient[coeff, 07[6]]
c8 = Coefficient[coeff, 08[6]]
```


## Using FormCalc's output functions it is also pretty straightforward to generate your own Fortran code:

```
file = OpenFortran["bsgamma.F"]
WriteString[file,
 SubroutineDecl["bsgamma(C7,C8)"] <>
 "\tdouble complex C7, C8\n" <>
 "#include \"looptools.h\"\n"]
WriteExpr[file, {C7 -> c7, C8 -> c8}]
WriteString[file, "\tend\n"]
Close[file]
```

As numerical calculations are done mostly using Weyl-spinor chains, there has been a paradigm shift for Dirac chains to make them better suited for analytical purposes, e.g. the extraction of Wilson coefficients.

- Already in Version 5, Fierz methods have been implemented for Dirac chains, thus allowing the user to force the fermion chains into almost any desired order.
- Version 6 further adds the Colour method to the FermionOrder option of CalcFeynAmp, which brings the spinors into the same order as the external colour indices.
- Also new in Version 6: completely antisymmetrized Dirac chains, i.e. DiracChain $[-1, \mu, \nu]=\sigma_{\mu \nu}$.
- Serious perturbative calculations these days can generally no longer be done by hand:
- Required accuracy, Models with many particles, ...
- Hybrid programming techniques are necessary:
- Computer algebra is an indispensable tool because many manipulations must be done symbolically.
- Fast number crunching can only be achieved in a compiled language.
- Software engincering and further development of the existing packages is a must:
- As we move on to ever more complex computations (more loops, more legs), the computer programs must become more "intelligent," i.e. must learn all possible tricks to still be able to handle the expressions.


## Using FeynArts and FormCalc is a lot like driving a car:

- You have to decide where to go (this is often the hardest decision).
- You have to turn the ignition key, work gas and brakes, and steer.
- But you don't have to know, say, which valve has to open at which time to keep the motor running.
- On the other hand, you can only go where there are roads. You can't climb a mountain with your car.

