Measurement of the b-jet cross section in events with a W boson in pp collisions at $\sqrt{s}=7~{\rm TeV}$ with the ATLAS detector

M. Vanadia

Max-Planck-Institut für Physik

July 22, 2011- IMPRS

- The ATLAS detector
- Production of b partons in association with a W boson
- Selection of the analysis
- The analysis method: the secondary vertex mass fit
- Background normalization: QCD
- Background normalization: $t\bar{t}$
- Unfolding and cross section extraction
- Results

The ATLAS detector

Subdetectors

• Inner Detector (ID)

- Solenoidal field
- Silicon tracker up to $|\eta| < 2.5$
- TRT tracker

Calorimeters

- \bullet EM up to $|\eta| < 3.2$
 - Liquid Argon sampling calorimeter
- Hadronic up to $|\eta| < 4.9$
 - Tile sampling calorimeter
 - Liquid Argon Calorimeter (forward)
- Muon Spectrometer (MS)
- Toroidal field
 - Tracking up to $|\eta| < 2.7$
 - Trigger up to $|\eta| < 2.4$

Production of b partons in association with a W boson

Important channel for SM and beyond

- There is a large uncertainty on the theory prediction
- QCD test
- ${\rm \circ}\,$ Main background for WH production with $H \to b \overline{b}$ decay
- Important background for Top physics
- Background of many new phsysics channel (see [1] for example)

CDF results

Big discrepancy between CDF results and NLO theoretical calculation $\sigma^{th}_{NLO} = 1.22 \pm 0.14$ $\sigma_{CDF} \times BR = 2.74 \pm 0.27 \pm 0.42$ See [2]

Requirement	Cut
Lepton transverse momentum p_T	$p_T^l > 20 \ GeV$
Lepton pseudo-rapidity η	$ \eta_l < 2.5$
Neutrino	$p_T^{ u}>25~{ m GeV}$
W mass	$m_T > 40 {\rm ~GeV}$
Jet transverse momentum p_T	$p_T^j > 25~{ m GeV}$
Jet rapidity y	$ y^{j} < 2.1$
Jet Multiplicity	$n^j \leq 2$
b-Jet Multiplicity	$nb^j \ge 1$
Jet Isolation	$\Delta R(l, jet) > 0.5$

Measurement performed

- Muon and Electron decays of W boson
- 1, 2 jets bin and combined
- 2010 data, $\int L = 35.5 \ pb^{-1}$

Truth b-jet definition

Jet matched in $\sqrt{\Delta\eta^2 + \Delta\phi^2} < 0.3$ with b parton with $p_T > 5~{\rm GeV}$

Physics process	Generator	$\sigma \cdot BR (nb)$		
$W \rightarrow \ell \nu + \text{jets} (0 \le N_{parton} \le 5)$	ALPGEN 2.13	10.46	NNLO	
$Z \rightarrow \ell \ell + \text{jets} (m_{\ell \ell} > 40 \text{ GeV}, 0 \leq N_{parton} \leq 5)$	ALPGEN 2.13	1.07	NNLO	
$t\bar{t}$	MC@NLO 3.1.3.1	89.7×10^{-3}	approx. NNLO	
Single-top (s-channel)	MC@NLO	4.3×10^{-4}	NLO	
Single-top (t-channel)	AcerMC 2.0	6.34×10^{-3}	NLO	
Single-top (Wt)	AcerMC 2.0	13.1×10^{-3}	NLO	
WW	HERWIG 6.510	44.9×10^{-3}	NLO	
WZ	HERWIG 6.510	18.5×10^{-3}	NLO	
ZZ	HERWIG 6.510	5.96×10^{-3}	NLO	

Jet Reconstruction

- On 2010 Electromagnetic calibration used
- $anti k_T$ algorithm used for reconstruction

b-jet tagging

- Relies on b-hadrons properties
 - High mass ($\approx 5 \ GeV$)
 - Long life time (fly for $\approx mm$)
 - Semi-leptonic decay
- The long life time makes it possible to reconstruct secondary vertices (ID resolution $\approx 10 \mu m$)
- Standard tagger for 2010 = SV (secondary vertex tagger)
- On 2011 data more powerful (and more complex) strategies will be used

- Reconstructed primary vertex with at least 3 tracks
- Events triggered by electron or muon trigger algorithms
- Isolated electron or muon
- $E_{miss}^T > 25 \ GeV$, $M_T^W > 40 \ GeV$
- \circ 1 or 2 jets with $p_T>25~GeV,~|y|<2.1,~>75\%$ momentum coming from primary vertex
- Exactly 1 b-jet, tagged using secondary vertex association algorithm (50% efficiency working point)

Source	1-jet	2-jet (1 b-tag)	2-jet (2 b-tag)
W+b	24.8	25.9	1.6
W+c	108.4	44.9	0.4
W+light	38.2	20.2	0
Total W+Jet	171.4	91	2
ttbar	10	39.7	7.4
SingleTop	17.2	23.1	2.5
QCD	8	9.9	-0.1
Z+Jet	3.7	2.4	0.2
Diboson	0.2	0.1	0
Total Predicted	210.6	166.2	12.1
Data	261	217	13

Expected number of events in the muon channel

Dealing with BG

- $\circ\,$ events with 2 b tagged jets = very low signal due to top bg $\rightarrow\,$ vetoed
- High light and c background
- The idea: use secondary vertex properties to have a further flavour discrimination

Secondary vertex mass fit in the electron channel, 1 jet bin

- Secondary vertex invariant mass distribution different for signal and background
- It can be used as a discriminating variable on statistical basis
- Template distributions produced on simulation (for QCD on data)
- Maximum likelihood fit
- Input to the fit: all non W+jet backgrounds normalizations
- Output of the fit:
 W+jet flavour fractions

The SV0 shapes are taken from simulations, and validated for b, c and light in different control regions.

The QCD shape is taken from data, from an enriched QCD sample.

Dealing with the background: $t\bar{t}$

The method

- Select events with ≥ 4 jets, ≥ 1 b-tagged jet
- This defines a control region, dominated by $t\bar{t}$ events
- Apply the secondary vertex mass fit to extract the $t\bar{t}$ fraction
- Extrapolate back to signal region (1 or 2 jets, 1 b-tagged jet) using MC simulations prediction
- Most uncertainties cancels out (b tagging uncertainty above all)
- Alternative method (tag-counting) gives compatible results

Validation of $t\bar{t}$ background normalization

Invariant mass of the W+b-jet system in the electron channel, combined 1+2 jet bins

Number of b-tagged jets in the muon channel, combined 1+2 jet bins

Multijet QCD backgrounds

- No intrinsic transverse momentum imbalance
- Contribution due to limited resolution of detector and mis-reconstructed objects

Electron channel

- Look at E_{miss}^{T} on full range after all other cuts
- Produce one template shape on simulation for EW
- Produce one template shape on data for QCD in a QCD enriched sample (non isolated electrons)
- Fit the templates to obtain QCD normalization on data
- Good agreement between data and fit results

Multijet QCD backgrounds

- No intrinsic transverse momentum imbalance
- Contribution due to limited resolution of detector and mis-reconstructed objects

Muon channel: the matrix method

Two samples defined, with a loose or tight isolation requirement real= prompt muons from W,Z fake= non-isolated or mis-identificated muons $N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$ $N^{tight} = N^{tight}_{real} + N^{tight}_{fake} = \epsilon_{real}N^{loose}_{real} + \epsilon_{fake}N^{loose}_{fake}$ Measure ϵ_{real} and ϵ_{fake} on data, calculate $N^{tight}_{fake} = \frac{\epsilon_{fake}}{\epsilon_{real} - \epsilon_{fake}} (\epsilon_{real}N^{loose} - N^{tight})$

The measurement

 ${}\circ~\epsilon_{real}$ measured with tag and probe method on data, using $Z \to \mu \mu$ events

• ϵ_{fake} estimated in a QCD enriched sample, $M_T^W < 20 \ GeV$

Validation of QCD background normalization

Single top

- Statistics too low to perform a measurement on data
- Prediction based on simulations
- Several uncertainties taken into account
 - Luminosity
 - 10% on normalization theory uncertainty
 - Initial/Final State Radiation uncertainties estimated using different Pythia simulation settings

mall backgrounds, estimated with simulations	
• Z+jets	
• WW	
• WZ	
• ZZ	

Now we have all the ingredients needed to perform the fit!

Fit results -1

Electron channel, 1 (top) and 2 (bottom) jets

Muon channel, 1 (top) and 2 (bottom) jets

Given the non W-jets background normalizations as input, the secondary vertex mass fit extracts the W+b, W+c, W+light fractions

	μ					е				
	1-jet		2-jet			1-jet	2-jet			
	MC	Fit result	MC	Fit result	MC	Fit result	MC	Fit result		
QCD multi-jet	-	8	-	9.9	-	10.4	-	5.8		
W+b	24.8	28.4 ± 13.0	25.9	62.4 ± 17.7	17.9	32.6 ± 13.1	18.9	37.7 ± 14.4		
W+c	108.4	169.6 ± 19.5	44.9	54.1 ± 18.6	84.3	104.7 ± 17.5	35.5	24.0 ± 14.7		
W+light	38.2	21.9 ± 10.4	20.2	21.2 ± 9.9	30.3	22.3 ± 10.1	17.2	14.4 ± 7.6		
tī	10.0	11.0	39.7	43.7	7.6	8.1	31.6	33.4		
single top	17.2	-	23.1	-	13.6	-	18.4	-		
WW/WZ	0.2	-	0.1	-	1.3	-	1.6	-		
$Z \to \ell \ell$	3.7	-	2.4	-	0.6	-	0.5	-		

The results of the fit is used to evaluate an event-level cross section:

$$\sigma_{W+b- ext{jet}} imes \mathscr{B}(W o \ell
u) = rac{(n^{tag} - n_{ ext{non}-WBG}) \cdot f_{W+b- ext{jet}}}{\int \mathscr{L} \cdot \mathscr{U}}.$$

The unfolding factor at denominator is the W+b reconstruction efficiency divided by the truth level acceptance in the fiducial region.

All data-driven corrections to simulations applied: reconstruction efficiency, b-jet calibration, momentum smearing...

Channel	Jet bin	$n_{Reco\ b-jets}^{e(lpha)}$	$n_{Reco\ b-jets}^{\tau}$	n ^{FiducialW} True b-jets	$\widetilde{\mathscr{U}}_{e(\infty)}(\%)$
Electrons	1	$17.64 {\pm} 0.84$	$0.276 {\pm} 0.078$	108.1 ± 2.2	$16.32 {\pm} 0.84$
	2	$18.15{\pm}0.69$	$0.73 {\pm} 0.15$	$91.05{\pm}1.6$	$19.94{\pm}0.83$
Muons	1	$24.2{\pm}1.0$	$0.61 {\pm} 0.16$	$107.0{\pm}2.1$	22.6 ± 1.0
	2	$25.53{\pm}0.84$	$0.374 {\pm} 0.091$	$91.7 {\pm} 1.6$	$27.8 {\pm} 1.0$

Cross Section [pb]									
	1 jet			2 jet			1+2 jet		
	μ	е	µ& e	μ	е	µ& e	μ	е	µ & e
Measured	3.5	5.5	4.5	6.2	5.1	5.7	9.7	10.7	10.2
Syst. \oplus Stat.	1.9	2.7	1.8	2.3	2.4	1.9	3.4	4.1	3.2
Statistical	1.6	2.1	1.3	1.8	1.9	1.3	2.4	2.8	1.9
Systematic	1.1	1.7	1.3	1.5	1.5	1.4	2.4	3.0	2.6
Systematics breakdown %									
b-tag efficiency & template shape	22	19	19	14	16	14	16	16	16
Jet uncertainties	9	6	7	7	10	8	7	7	7
QCD background	7	18	11	4	8	4	5	13	7
Missing Energy	1	1	1	2	2	1	1	1	1
<i>tī</i> & single top	14	9	11	12	17	14	12	12	12
Lepton uncertainties	3	5	3	2	5	3	2	5	3
Model dependence	9	8	9	10	10	10	9	9	9
Pile-up	5	4	5	3	3	3	3	4	3
Luminosity	5	5	5	4	5	5	5	5	5

- For each systematic variation considered, the full chain of the analysis is repeated
- Main systematics
 - b-jet efficiency: the limiting systematics. It affects W+b unfolding and single top estimate in correlated way. It is reduced thanks to the data driven $t\bar{t}$ estimate.
 - \bullet jet energy scale has the biggest impact in the $t\bar{t}$ estimate.
 - single top and top pair theory uncertainties are significant
- Signal modeling systematics were taken into account
- b tagging efficiency, therefore the unfolding, depends strongly
 - on b-jet momentum
 - on the angle between the two b partons (if they end in the same jet, the efficiency is higher)
- An estimate on this was produced varying the contribution to signal of
 - $g \to b\overline{b}$
 - $q\overline{q} \to W b\overline{b}$

Comparison with theory

Theory prediction by theorists [3]

- The analysis is becoming a paper right now [4]
- The measured cross section suggests an excess wrt predictions
- The measurement is limited by statistics, but in 2011 available already more than 30 times more statistics
- No trivial extension: better b-tagging algorithms available, need to update data driven correction to simulations, ...

- 1 "Phenomenology of the left-right twin Higgs model"; PHYS. REV. D 75, 075010 (2007)
- 2 First Measurement of the b-jet Cross Section in Events with a W Boson in p-pbar Collisions at $\sqrt{s} = 1.96 TeV$; arXiv:0909.1505
- 3 NLO QCD predictions for W \pm 1 jet and W \pm 2 jet production with at least one b jet at the 7 TeV LHC; arXiv:1107.3714
- 4 The article that will be published sooner or later