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The ATLAS detector

o Inner Detector (ID)

e Solenoidal field

o Silicon tracker up
to |n| < 2.5

o TRT tracker

o Calorimeters
e EM up to |n| < 3.2
e Liquid Argon
sampling
calorimeter
e Hadronic up to
[n| < 4.9
e Tile sampling
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o Muon Spectrometer
(MS)
o Toroidal field
e Tracking up to
In| < 2.7
e Trigger up to
In| < 2.4
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Production of b partons in association with a W boson
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Important channel for SM and beyond
o There is a large uncertainty on the theory prediction
0 QCD test
o Main background for WH production with H — bb decay
o Important background for Top physics

o Background of many new phsysics channel (see [1] for example)

CDF results

Big discrepancy between CDF results and NLO theoretical calculation
oo =1.2240.14

oopr X BR =2.74 4+ 0.27 £ 0.42

See [2]

| N




Phase space definition and simulated samples

Measurement performed

Requirement [ Cut © Muon and Electron
Lepton transverse momentum pr | pp > 20 GeV decays of W boson
Lepton pseudo-rapidity 1 |mi| < 2.5 o 1, 2 jets bin and
Neutrino pr > 25 GeV combined
W mass mr > 40 GeV o 2010 data,
Jet transverse momentum pr pyr > 25 GeV [L=355 pb~1
Jet rapidity y 7] < 2.1 J
Jet Multiplicity n! <2 . —
b-Jet Multiplicity b > 1
Jet Isolation AR(l, jet) > 0.5 Jet matched in
VAR + A¢? < 0.3 with b
parton with pr > 5 GeV

Physics process Generator o -BR (nb)

W — tv + Jets (0 < Nparton < 5) ALPGEN 2.13 10.46 NNLO
Z — ee + jets (mgy > 40 GeV, 0 < Nparton <5) | ALPGEN 2.13 1.07 NNLO
tt MCGONLO 3.1.3.1 89.7x10—3 approx. NNLO
Single-top (s-channel) MC®@NLO 4.3x10—4 NLO
Single-top (¢-channel) AcerMC 2.0 6.34x10~3 NLO
Single-top (wt) AcerMC 2.0 13.1x10—3 NLO
ww HERWIG 6.510 44 9x10—3 NLO
wz HERWIG 6.510 18.5x1073 NLO
zZZ HERWIG 6.510 5.96x10—3 NLO




Tagging a b-jet

Jet Reconstruction

o On 2010 Electromagnetic
calibration used

Jet axis o anti — kr algorithm used for
reconstruction

v

b-jet tagging

o Relies on b-hadrons properties
e High mass (=5 GeV)
e Long life time (fly for =~ mm)
e Semi-leptonic decay

Secondary vertex

o The long life time makes it
possible to reconstruct secondary
vertices (ID resolution =~ 10um)

o Standard tagger for 2010 = SV

Primary vertex (secondary vertex tagger)

o On 2011 data more powerful (and
more complex) strategies will be
used
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Selection of the analysis

o Reconstructed primary vertex with at least 3 tracks

o Events triggered by electron or muon trigger algorithms

(*]

Isolated electron or muon
EL..o>25 GeV, MY > 40 GeV
o 1 or 2 jets with pr > 25 GeV/,

Exactly 1 b-jet, tagged using secondary vertex association algorithm (50% efficiency
working point)

o

y| < 2.1, > 75% momentum coming from primary vertex

(]

Expected number of events in the muon channel

Source l-jet | 2-jet (1 b-ta 2-jet (2 ba,

Wc 108.4 449 0.4 o events with 2 b tagged jets =
Wlight 38.2 20.2 0 very low signal due to top bg —
Total W+Jet 171.4 91 2 vetoed

ttbar 10 39.7 7.4

SingleTop 17.2 23.1 2.5 o High light and c background
Sf_]i]l ;_i? gi ;?21 0 The idea: use secondary vertex
Diboson 0.2 0.1 0 properties to have a further
Total Predicted | 210.6 166.2 12.1 flavour discrimination

Data 261 217 13




The secondary vertex mass fit

Secondary vertex mass fit in the electron channel, 1 jet bin

Events / 0.5 GeV
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Secondary vertex mass [GeV]

o0 Secondary vertex

invariant mass
distribution different for
signal and background
It can be used as a
discriminating variable
on statistical basis
Template distributions
produced on simulation
(for QCD on data)
Maximum likelihood fit

Input to the fit: all non
W++jet backgrounds
normalizations

Output of the fit:
Wjet flavour fractions

The SVO0 shapes are taken from simulations, and validated for b, ¢ and light in different control
regions.

The QCD shape is taken from data, from an enriched QCD sample.



Dealing with the background: tt

The method

o Select events with > 4
E 40:—' T L . 'Da'ta‘ L ;: jets, > 1 b-tagged jet
S 352_ -x:ﬁghtjet e © This defines a control
; E Weo ] region, dominated by tt
£ 30 I QCD multi-jets i events
[ C I top 7
Lﬁ 25: single top = o Apply the secondary
= =\Z~\7w|\|'vz 3 vertex mass fit to
202_ = extract the tt fraction
B ] o Extrapolate back to
15 — signal region (1 or 2
E 1 jets, 1 b-tagged jet)
10; = using MC simulations
5:_ 3 prediction
E ] o Most uncertainties
2 5 é cancels .out (b tagging
Secondary vertex mass [GeV] UrgErEEy Fee all)
o Alternative method
(tag-counting) gives
compatible results |




Validation of ¢t background normalization
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Number of b-tagged jets in the muon channel,
combined 142 jet bins

Invariant mass of the W+Db-jet system in the
electron channel, combined 142 jet bins
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Dealing with the background: QCD

Multijet QCD backgrounds

o No intrinsic transverse momentum imbalance

o Contribution due to limited resolution of detector and mis-reconstructed objects

Events

80
70
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10

CJO

TTTT

+ Data

—— EW Template

. QCD Template

20 40 60 80 100
Missing ET [GeV]

Electron channel

Qo

Look at EZ,.. on full
range after all other
cuts

Produce one template
shape on simulation for
EW

Produce one template
shape on data for QCD
in a QCD enriched
sample (non isolated
electrons)

Fit the templates to
obtain QCD
normalization on data

Good agreement
between data and fit
results
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Dealing with the background: QCD

Multijet QCD backgrounds
o No intrinsic transverse momentum imbalance

o Contribution due to limited resolution of detector and mis-reconstructed objects

Muon channel: the matrix method

Two samples defined, with a loose or tight isolation requirement
real= prompt muons from W,Z
fake= non-isolated or mis-identificated muons

loose __ loose loose
N — 4Vreal + Nfake

tight __ tight tight __ loose loose
N = Nreal = Nfake = E'reu.lNreal A EfakeNfake
Measure €req; and €rqke ON data, calculate

tight __ €fake loose __ tight
Nfake D €reql€rake (ere’llN N )

| &

The measurement
O €reqr Measured with tag and probe method on data, using Z — uu events
O €fake eStimated in a QCD enriched sample, M} < 20 GeV

=
N



Validation of QCD background normalization
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ETTM-SS in the electron channel, combined 142

jet bins M} in the muon channel, 1 jet bin
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Other backgrounds

Single top

o Statistics too low to perform a measurement on data

o Prediction based on simulations
o Several uncertainties taken into account

e Luminosity
e 10% on normalization theory uncertainty
e Initial/Final State Radiation uncertainties estimated using different Pythia simulation

settings
v
Small backgrounds, estimated with simulations

o Z+jets
o WW
o Wz
o ZZ

v

Now we have all the ingredients needed to perform the fit!



Fit results -1

Electron channel, 1 (top) and 2 (bottom) jets Muon channel, 1 (top) and 2 (bottom) jets
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Given the non W-jets background normalizations as input, the secondary vertex mass fit extracts

the W+b, W+c, W+Hlight fractions

m
I-jet 2-jet 1-jet 2-jet
MC Fit result MC Fit result MC Fit result MC Fit result
QCD multi-jet - 8 - 9.9 - 10.4 - 5.8
W+b 24.8 284 +13.0 || 259 | 624+ 17.7 || 17.9 | 32.6+13.1 18.9 | 37.7+ 144
W+c 108.4 | 169.6 + 19.5 449 | 541+ 186 84.3 | 1047+ 175 355 | 240+ 147
W+light 38.2 219+104 || 20.2 | 21.2+99 303 | 223+ 10.1 172 | 144+76
i 10.0 11.0 39.7 43.7 7.6 8.1 31.6 334
single top 17.2 - 23.1 - 13.6 - 18.4 -
WW/WZ 0.2 - 0.1 - 1.3 - 1.6 -
Z—= 3.7 24 - 0.6 0.5 -

Fit results -2
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Cross section extraction: the unfolding

The results of the fit is used to evaluate an event-level cross section:

(1'% — Npon-WEG) * fW4+b—jet

OW+b—jet % BW —lv) =

[ %

The unfolding factor at denominator is the Wb reconstruction efficiency divided by the truth
level acceptance in the fiducial region.
All data-driven corrections to simulations applied: reconstruction efficiency, b-jet calibration,

momentum smearing...

Channel | Jetbin | miys) s iore | Mo pjers | nfii® | Zege (%)
1 17.64+0.84 | 0.2764+0.078 | 108.1+£2.2 | 16.3240.84
Electrons
2 18.154+0.69 0.7340.15 91.05£1.6 | 19.9440.83
Muons 1 24.241.0 0.614+0.16 107.042.1 22.6+1.0
’ 2 25.53+0.84 | 0.37440.091 | 91.7+1.6 27.8+1.0
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Cross Section [pb]

1 jet 2 jet 1+2 jet
o e | péde H e |pé&e u e né&e
Measured 35|55 4.5 6.2 | 5.1 5.7 9.7 | 10.7 | 102
Syst. & Stat. 1.9 | 2.7 1.8 23|24 1.9 34 | 4.1 3.2
Statistical 1.6 | 2.1 1.3 1.8 ] 1.9 1.3 24| 28 1.9
Systematic 1.1 | L7 1.3 15 | 1.5 1.4 24 | 3.0 2.6

Systematics breakdown %
b-tag efficiency & template shape | 22 | 19 19 14 | 16 1

=
o
—
o)
—
o

Jet uncertainties 9 6 7 7 10 8 7 7 7
QCD background 7 18 11 4 8 4 5 13 7
Missing Energy 1 1 1 2 2 1 1 1 1
tf & single top 14 9 11 12 | 17 14 12 12 12
Lepton uncertainties 3 5 3 2 5 3 2 5 3
Model dependence 9 8 9 10 | 10 10 9 9 9
Pile-up 5 4 5 3 3 3 3 4 3
Luminosity 5 5 5 4 5 5 5 5 5
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Systematics

(o]

For each systematic variation considered, the full chain of the analysis is repeated

o

Main systematics
e b-jet efficiency: the limiting systematics. It affects W-+b unfolding and single top
estimate in correlated way. It is reduced thanks to the data driven tt estimate.
e jet energy scale has the biggest impact in the tt estimate.
e single top and top pair theory uncertainties are significant

©

Signal modeling systematics were taken into account
b tagging efficiency, therefore the unfolding, depends strongly
e on b-jet momentum
e on the angle between the two b partons (if they end in the same jet, the efficiency is
higher)
o An estimate on this was produced varying the contribution to signal of
0o g—bb _
e qq — Whb

©
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Comparison with theory

Theory prediction by theorists [3]
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Conclusions and plans for 2011

o The analysis is becoming a paper right now [4]
o The measured cross section suggests an excess wrt predictions

o The measurement is limited by statistics, but in 2011 available already more than 30 times
more statistics

o No trivial extension: better b-tagging algorithms available, need to update data driven
correction to simulations, ...
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