MUON TRACKING WITH MICRO-PATTERN GASEOUS DETECTORS MICROMEGAS

Jona Bortfeldt

LS Schaile Ludwig-Maximilians-Universität München, Germany

> Young Scientist Workshop Wildbad Kreuth July 26th 2011

Introduction

THE ATLAS EXPERIMENT AT LHC

Introduction

SLHC: WHY NEW MUON DETECTORS?

expected background rates [Hz/cm²], including safety factor of 5

J. v. Loeben, IEEE Nucl. Sc. Symp. 2010

high-rate neutron- & γ -background:

- occupancy \leftrightarrow low efficiency
- degradation of spatial resolution \leftrightarrow worse momentum resolution

PROPERTIES OF A "GOOD" MUON DETECTOR FOR ATLAS

- high efficiency to muons
- good spatial resolution $\Delta r \lesssim 50\,\mu{
 m m}$
- high rate capability
 - low occupancy
 - little degradation of spatial resolution in high flux $\gamma\text{-}$ and neutron-background
- large area coverage
- cost effective
- reliable = no or at least little aging

WHAT ARE WE DOING?

- large area detector systems with good spatial resolution (ATLAS Small Wheel Upgrade, MAMMA collaboration)
- investigate behavior of Micromegas under irradiation (stability, spatial resolution, efficiency)
- muon track monitor/telescope (high-rate capable, good spatial resolution $\Delta x \lesssim 50\,\mu$ m, radiation hard)
 - 140 GeV muons/pions @ H8 and H6/CERN
 - cosmic muons @ GIF/CERN
 - cosmic muons @ Tandem accelerator/MLL Garching

OUTLINE

1 INTRODUCTION

Principles of Gasdetectors Detector Setup

② GENERAL DETECTOR PERFORMANCE Flash ADC Setup Energy Resolution

Efficiency for γ s and Neutrons Sparking

8 MUON TRACKING SYSTEM Setup Spatial Resolution

4 Summary

IONIZATION CHAMBER

- charged particles: el.-magn. interaction dominant in gas detectors \rightarrow excitation and ionization
- incident particle deposits energy in gas, Bethe-Bloch \rightarrow $\langle dE/dx \rangle$
- $\langle \mathrm{d}E/\mathrm{d}x \rangle_\mathrm{MIP} = 2.53\,\mathrm{keV/cm}$ in Ar @ NTP
- $\#_{e-\text{ion pairs}} = \frac{\langle dE/dx \rangle}{W_l}$
- $W_l \sim 25 \text{ eV}$ in Ar (also accounts for excitation) $\rightarrow \sim 100 \text{ e-ion-pairs/cm}$
- measureable but really difficult!

Jona Bortfeldt (LMU München)

GAS AMPLIFICATION

- in strong electric fields, e⁻ gain enough energy to further ionize the gas
- mean free path $\lambda_{lpha}=1/lpha$
- first Townsend coefficient $\alpha = \#_{\rm e-ion\ pairs} / {\rm cm}$
- $N(x) = N_0 \exp(\alpha x)$
- gain factors of 3000 20000 sufficient

Introduction

Detector Setup

Setup & Functional Principle

- ionization in 5-7 mm drift region
- gas amplification in 128 µm amplification region
- 90 \times 100 mm², 360 strips (150 μm width and 250 μm pitch)
- gas: Ar:CO₂ 93:7, 90:10, 85:15 and 80:20 @ NTP

FLASH ADC: SETUP

- $1 \text{ GHz FADC} \rightarrow \text{temporal}$ structure of charge signals
- all strips or subgroups of strips interconnected
- internal trigger: det. trigger, ⁵⁵Fe source
- external trigger:
 - 2 fold coinc.
 - 3 fold coinc., cosmics
- efficiency $\varepsilon = \frac{\#M\Omega}{\#Sc \times f_{geom}}$
- MC simulation of cosmic tracks \rightarrow correction factor f_{geom}
- $\varepsilon_{\rm mip}\gtrsim 98\%$

Flash ADC Setup

FLASH ADC: SIGNAL ANALYSIS

•
$$f(t) = \frac{p0}{\exp((p1-t)/p2)+1} + p3$$

•
$$p0 \rightarrow amplitude: 3 - 250mV$$

- $p1 \rightarrow timing$
- $p2 \rightarrow rise time: 45 200 ns$
- p3 → offset, only small variation
- possible condition: mean1 - mean2 > 3σ

Energy Resolution @ 5.9 keV X-rays

 $^{55}{\rm Fe}$ decays via electron capture. Photoeffect dominant interaction \rightarrow mono-energetic lines:

- 5.9 keV (Mn_{Kα})
- 6.5 keV (Mn_{Kβ})
- 2.94 keV (Mn_{Kα,esc})

$$\frac{\Delta E}{E}_{FWHM} = 24\%$$

Efficiency for Gammas (^{137}Cs)

- calibrated sources with known activity \dot{N}_{tot}
- count signals within 300 s $\rightarrow \dot{N}_{\rm meas}$
- determine solid angle Ω and correct for absorption (Al-lid with width d_{eff}) \rightarrow $\dot{N}_{\text{true}} = \dot{N}_{\text{tot}} \cdot \frac{\Omega}{4\pi} \cdot \exp(-\lambda \cdot d_{\text{eff}})$
- $\varepsilon = \dot{N}_{\rm meas} / \dot{N}_{\rm true}$
- 137 Cs ($E_{\gamma} = 662 \text{ keV}$): $\dot{N}_{true,\gamma} = (1.59 \pm 0.04) \text{ MHz}$ $\varepsilon_{\gamma} = (2.6 \pm 0.2) \times 10^{-3}$

Efficiency for Neutrons (^{252}Cf)

- E_n up to 8 MeV, $E_\gamma \approx$ keV...4 MeV
- issue: only total rate measurable $\rightarrow \dot{N}_{meas}(neutron) =?$
- add Pb-absorber and measure total rates R_{d=1cm} & R_{d=5cm}
- $R_{1cm} = f_{1cm,n} \dot{N}_{meas,n} + f_{1cm,\gamma} \dot{N}_{meas,\gamma}$ $R_{5cm} = f_{5cm,n} \dot{N}_{meas,n} + f_{5cm,\gamma} \dot{N}_{meas,\gamma}$
- use PSD to determine the fs

• ²⁵²Cf:

$$\dot{N}_{\text{tot},n} \cdot \frac{\Omega}{4\pi} = (9.1 \pm 0.3) \text{ kHz}$$

 $\dot{N}_{\text{tot},\text{fiss}\gamma} \cdot \frac{\Omega}{4\pi} = (16.4 \pm 1.3) \text{ kHz}$
 $\varepsilon_n < 6.8 \times 10^{-4} @ 95\% \text{ CL}$
 $\varepsilon_\gamma = (1.5 \pm 0.4) \times 10^{-3}$

Sparking

Sparking in Micromegas

- discharges from mesh onto anode, **non-desctructive**
- possibly triggered by highly-ionizing particles $(\Delta E \gg 400 \text{ keV})$
- $r_{\pi^-} = (1.0 \pm 0.2) \times 10^{-5} / \text{pion}$ @ flux 5 × 10⁴s⁻¹cm⁻²
- dead time after spark $< 20 \, \mathrm{ms}$
- protection of readout electronics absolutely necessary
- additional resistor to avoid mesh discharge

General Detector Performance Spa

Sparking

Spark Photographs Cosmics – Setup

- ground readout strips via $10\,k\Omega$ resistor, switch on high voltage
- use analog single-lens reflex camera (with film!) for long-time exposure $\sim 16\,\text{h}$
- sparks visible as small white dots due to excitation of gas

General Detector Performance

Sparking

Spark Photos – No Irradiation

- discharges not localized, but \sim homogeneously distributed over active area
- more discharges at the edges of the active area
 - \rightarrow highly-ionizing particles + charge-up effects?

Jona Bortfeldt (LMU München)

Sparking

Spark Photos – γ Irradiation

- 137 Cs ($E_\gamma=662\,\mathrm{keV}$)
- increased spark rate due to irradiation
- reaction of γ s in Al-frame or cathode-frame?
- further investigation needed

Muon Tracking System S

Setup

TRACKING SYSTEM: COSMICS SETUP

- 4 Micromegas
- strips parallel \rightarrow 2-dim. track reconstruction
- modified Gassiplex based strip readout, formerly used in HADES
- 16 ch per Gassiplex; 4 Gassiplex per frontend; 6 FEs per detector → 1500 channels
- trigger: 6 strip scintillators (3rd track coordinate) + 1
 scintillator panel (600 MeV energy cut)

Setup

TRACKING SYSTEM: TESTBEAM SETUP

H6 beamline/CERN: π^- with $p = 120 - 300 \,\text{GeV}$

Setup

TRACKING SYSTEM: DATA ANALYSIS

- hits: center-of-gravity method, regarding only those strips with amplitude> 3σ around the one with maximum amplitude
- hit ambiguities: look for significant hits on a 5.25 mm wide road, defined by other detectors
- track reconstruction: linear fit through all detectors → alignment

Spatial Resolution

DETERMINATION OF SPATIAL RESOLUTION

 interpolate track prediction by two detectors into 3rd and compare with measured hit in that detector

•
$$\delta = \mathbf{r}_3 - \mathbf{r}_2 \frac{d_{13}}{d_{12}} - \mathbf{r}_1 \left(1 - \frac{d_{13}}{d_{12}} \right) \rightarrow$$

 $(\Delta \delta)^2 =$
 $(\Delta r_3)^2 + \left(\frac{d_{13}}{d_{12}} \Delta r_2 \right)^2 + \left[\left(1 - \frac{d_{13}}{d_{12}} \right) \Delta r_1 \right]^2$

 4 different triplett-equations & 4 $\Delta r_i \rightarrow$ solvable system

Muon Tracking System

Spatial Resolution

Spatial Resolution for 120 GeV Pions – Preliminary

- 120 GeV pions, angle 90°
- simplified assumption: spatial resolution the same for all detectors → only one equation

•
$$\Delta r = \Delta \delta / \sqrt{1.79} \sim 34 \, \mu m$$

SPATIAL RESOLUTION: IRRADIATION WITH ¹³⁷Cs

tripl.	$\Delta\delta$ [µm]	$\Delta \delta_{\sf irr}$ [µm]
123	(105 ± 5)	(108 ± 5)
124	(108 ± 5)	(108 ± 6)
134	(118 ± 7)	(117 ± 5)
234	(122 ± 7)	(119 ± 5)

• $E_{\gamma} = 662 \, \mathrm{keV}$

- 2 sources with $A_{\rm tot} \sim 5.8\,{\rm MBq}$
- $1.6 \,\text{MHz} \times (2.6 \times 10^{-3}) = 4.1 \,\text{kHz}$
- efficiency $arepsilon_\gamma = (2.6\pm0.2) imes10^{-3}$
- slight increase of spark rates $f_{\rm sp,\ Cs137}/f_{\rm sp,no\ irrad.}=1.26\pm0.07$
- no significant degradation of spatial resolution visible \rightarrow Micromegas expected to be suitable for providing track reference/trigger in GIF measurements ($\sim 20 \text{ MHz}$ @lab $\rightarrow \sim 50 \text{ MHz}$ @GIF)

Muon Tracking System Spatial Resolution

Spatial Resolution: Irradiation with ^{252}CF

- α -source, in 3% spontaneous fission $\rightarrow E_{\gamma} = \text{keV} \cdots 4 \text{ MeV } \& E_n \leq 8 \text{ MeV}$
- $\dot{N}_{3,n} = (9.1 \pm 0.3) \, \text{kHz}$

•
$$\varepsilon_n < 6.8 imes 10^{-4}$$
 @ 95% CL

- increase of spark rates $f_{\rm sp, \ Cf252}/f_{\rm sp, no \ irrad.} = 0.5 \ {\rm min}^{-1}/0.19 \ {\rm min}^{-1} = 2.6 \pm 0.2$
- spatial resolution: statistic not sufficient for usual method, but no degradation expected since pulse height unchanged

Summary

SUMMARY

- stable operation with single plane readout and fast strip readout @ $\varepsilon \sim 98\%$
- energy resolution for 5.9 keV X-rays: $\Delta E/E \sim 24\%$
- tracking system with 4 Micromegas running, readout stable in lab and in hadron beam for $\sim O(\text{week})$
- single detector spatial resolution of $\overline{\sigma} = 34\,\mu\text{m}$ for 120 GeV Pions
- no degradation of spatial resolution under irradidation with ¹³⁷Cs, no degradation for ²⁵²Cf expected

Thank you!