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Geometry?
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A problem...

10d 4d
?
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... and its meaning

Structure of space-time?

I “Ordinary” space-time for the 4-dimensional part

I “Small” space for the 6-dimensional remain

Mathematically: a manifold. What kind of manifold?

I First guess: a product

M10 = M4 ×M6
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Example: R2 × S1
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The geometry of M4

I General relativity: a four-dimensional, smooth, connected
Lorentzian manifold

I Cosmology: homogeneous and isotropic universe
⇒ Maximally symmetric space
⇒ Constant curvature
⇒ M4 is either Minkowski, AdS or dS
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What about M6?

I “Small”: size of extra dimensions compared to typical
lengthscales in experiments

I Size? Need bounded dimensions! ⇒ take M6 to be compact.
(Recall: in R: M compact ⇔ M closed and bounded.)
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Ok, let’s do that!

I Find a solution to the theory:
I Solve the equations of motion
I Here: type II string theory in its low-energy approximation

(supergravity)
I Take the easiest setup: a solution that gives 4d vacuum
I Expectation value of the fermion fields: < (fermion) >= 0

I Preserve supersymmetry:

δε(fermion) = (boson)
!

= 0

δε(boson) = (fermion) = 0

I Supersymmetry ⇒ equations of motion (luckily!)
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Equations, equations!

I Variation of the gravitino field:

δεΨµ = ∇µε
!

= 0

I Can be decomposed:

I On M4: R4 = 0
I On M6: ∇mη = 0
⇒ Internal manifold has covariantly constant spinor
⇒ Strong geometrical constraint: reduced holonomy
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Holonomy?

Image: Wikimedia Commons
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The result: a Calabi-Yau manifold
I Holonomy reduced to SU(3), Ricci-flat (Ricµν = 0)
I Examples: Torus T 2 (in 2d), T 4 and K3 (in 4d)

Image: Wikimedia Commons
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Not good

A Calabi-Yau geometry is not satisfactory:

I M4 is bound to be Minkowski.

I There are moduli.

I There is too much supersymmetry.
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Anything else?

I Recall the first guess: a product manifold M10 = M4 ×M6

I Can we allow for more?

Yes, a warped product!

ds2 = e2A(y)gµνdxµdxν + gmndymdyn

Size of M4 depends on the position in M6.
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Susy does not like warping

I The internal components of ∇µε
!

= 0 become

kR4 + (∇A)2 = 0

I M6 compact ⇒ ∇A = 0
⇒ no warping, M4 again Minkowski.
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Flux?
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Fluxes in the closed string spectrum

I Type II closed string spectrum:

NS-NS 8v ⊗ 8v = 35⊕ 28⊕ 1 gµν , Bµν , Φ

R-R 8s ⊗ 8s/c = p-forms RR-fields

NS-R 8v ⊗ 8s/c = 8s/c ⊕ 56s/c Ψµ, λ

R-NS 8s ⊗ 8v = 8s ⊕ 56s Ψ′µ, λ
′

I RR-fluxes:

I Tensor decomposition:

8s ⊗ 8c = C (1) ⊕ C (3) IIA

8s ⊗ 8s = C (0) ⊕ C (2) ⊕ C (4) IIB

I Take RR-fields as potentials: F (n+1) = dC (n)

I H-flux: H = dB
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Flux in M6

I Take electrodynamics as inspiration: field strength F (2)

I Fluxes can wrap cycles in the internal manifold.
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Fluxes and geometry I

I Flux lines → energy density

I Decreasing volume → increasing density → “pressure”

I Mathematically: Derive equations of motion from action and
find for example

R6 +
1

2
g2
s |F2|2 +

3

2

(
g2
s |F0|2 − |H|2

)
= 0
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Fluxes and geometry II

I Supersymmetry variation reloaded:

δεΨµ =

(
∇µ +

1

8
P /Hµ

)
ε+

1

16
eΦ
∑
n

1

(2n)!
/F (2n)ΓµPnε

I Decompose derivative of the spinor,

∇µε = (torsion classes) 6= 0

⇒ Fluxes induce torsion!
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Fluxes and geometry II
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Torsion?
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Torsion!

Classification of M6 with respect to its torsion:

I Complex

I Symplectic

I Half-flat

I Special Hermitean

I Nearly Kähler

I Almost Kähler

I Kähler

I Conformal Calabi-Yau

I Calabi-Yau

22/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Torsion!

Classification of M6 with respect to its torsion:

I Complex

I Symplectic

I Half-flat

I Special Hermitean

I Nearly Kähler

I Almost Kähler

I Kähler

I Conformal Calabi-Yau

I Calabi-Yau

22/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Fluxes and geometry III

Geometry also affects the choice of the fluxes:

I Dirac quantisation condition∫
Σp

F (p) = Np ∈ Z

I Values are determined by integrals over cycles

I Number of different cycles is determined by topological
features of M6
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Compactification?
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∫
d10x

(
10d
)
→

∫
d4x

∫
d6x

(
4d
)
·
(
6d
)

=
(
number

)
·
∫

d4x
(
4d
)
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Geometry and compactification I

I A type II example:

S =
1

2κ2

∫
d10x e−2φ

√
|g |
(
R+ 4|dφ|2 − 1

2
|H|2

)

I Defining two moduli:

I Volume: gij → g
(0)
ij ρ

I Dilaton: e−φ → e−φ
(0)

e−ϕ and σ = ρ3/2e−ϕ

I Integrating out the internal dimensions:

S = M2
4

∫
d4x
√
|gµν |

(
R4 + kin + σ−2ρ−1R6 −

1

2
σ−2ρ−3|H|2

)
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Geometry and compactification II

I Take into account more involved deformations that

I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:

I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and

I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:

I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:

I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:

I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:
I Size deformations (so-called Kähler moduli)

I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:
I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:
I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can

I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:
I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can
I make even more deformations possible and

I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Geometry and compactification II

I Take into account more involved deformations that
I respect the characteristics of the manifold and
I preserve the supersymmetry conditions.

I For a Calabi-Yau manifold:
I Size deformations (so-called Kähler moduli)
I Shape deformations (so-called complex structure moduli)

I Fluxes can
I make even more deformations possible and
I give rise to masses for moduli.

27/28 P. Patalong, String theory group Flux compactifications and geometry in string theory



Geometry
Flux

Compactification

Take-away message

Fluxes → Internal geometry → 4-dimensional theory
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