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Geometry

A problem...

10d <> 4d
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and its meaning

Structure of space-time?
» “Ordinary” space-time for the 4-dimensional part

» “Small” space for the 6-dimensional remain
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and its meaning

Structure of space-time?
» “Ordinary” space-time for the 4-dimensional part
» “Small” space for the 6-dimensional remain
Mathematically: a manifold. What kind of manifold?

» First guess: a product

MlO = M4 X M@
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Geometry

Example: R? x S?
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The geometry of M,

» General relativity: a four-dimensional, smooth, connected
Lorentzian manifold

» Cosmology: homogeneous and isotropic universe
= Maximally symmetric space
= Constant curvature
= My, is either Minkowski, AdS or dS
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What about Mg?

> “Small”: size of extra dimensions compared to typical
lengthscales in experiments
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What about Mg?

> “Small”: size of extra dimensions compared to typical
lengthscales in experiments

» Size? Need bounded dimensions! = take Mg to be compact.
(Recall: in R: M compact < M closed and bounded.)
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What about Mg?

> “Small”: size of extra dimensions compared to typical
lengthscales in experiments

» Size? Need bounded dimensions! = take Mg to be compact.
(Recall: in R: M compact < M closed and bounded.)
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Ok, let's do that!

» Find a solution to the theory:

» Solve the equations of motion

» Here: type Il string theory in its low-energy approximation
(supergravity)

» Take the easiest setup: a solution that gives 4d vacuum

» Expectation value of the fermion fields: < (fermion) >=0

> Preserve supersymmetry:

J<(fermion) = (boson) =0

d:(boson) = (fermion) =0

» Supersymmetry = equations of motion (luckily!)

P. Patalong, String theory group | Flux compactifications and geometry in string theory



Equations, equations!

» Variation of the gravitino field:

5.V, =V,e=0

» Can be decomposed:
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Equations, equations!

» Variation of the gravitino field:

5.V, =V,e=0

» Can be decomposed:
» On My: R4 =0
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Equations, equations!

» Variation of the gravitino field:

5.V, =V,e=0

» Can be decomposed:
» On My: R4 =0
» On Ms: Vo =0
= Internal manifold has covariantly constant spinor
= Strong geometrical constraint: reduced holonomy
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Geometry

Holonomy?

Image: Wikimedia Commons
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The result: a Calabi-Yau manifold

» Holonomy reduced to SU(3), Ricci-flat (Ric,, = 0)
» Examples: Torus T2 (in 2d), T* and K3 (in 4d)
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The result: a Calabi-Yau manifold

» Holonomy reduced to SU(3), Ricci-flat (Ric,, = 0)
» Examples: Torus T2 (in 2d), T* and K3 (in 4d)
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Not good

A Calabi-Yau geometry is not satisfactory:
» M, is bound to be Minkowski.
> There are moduli.

» There is too much supersymmetry.
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Anything else?

» Recall the first guess: a product manifold Mg = My x Ms
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Anything else?

» Recall the first guess: a product manifold Mg = My x Ms

» Can we allow for more?
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Anything else?

» Recall the first guess: a product manifold Mg = My x Ms

» Can we allow for more?
Yes, a warped product!

ds® = eQA(y)ngx“dX” + gmndy™dy"

Size of My depends on the position in M.
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Susy does not like warping

|
» The internal components of Ve = 0 become

kR4 + (VA? =0
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Susy does not like warping

» The internal components of Ve < 0 become
kR4 + (VA? =0

» Mg compact = VA =10
= no warping, M again Minkowski.
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Flux

Flux?




Fluxes in the closed string spectrum

» Type Il closed string spectrum:

NS—NS 8V X 8\, = 35 ©® 28 ® 1 g,uua Bm/a o

R-R 8; ® 8,/ = p-forms RR-fields
NS-R 8, ® 8s/c = 85/C D 565/C \UM’ A
R-NS 8. ®8, =8, D56, v, N
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Fluxes in the closed string spectrum

» Type Il closed string spectrum:

NS—NS 8V X 8\, = 35 ©® 28 ® 1 g,uua Bm/a o

R-R 8; ® 8,/ = p-forms RR-fields
NS-R 8, ® 8s/c = 85/C D 565/C \UM’ A
R-NS 8. ®8, =8, D56, v, N
» RR-fluxes:
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Fluxes in the closed string spectrum

» Type Il closed string spectrum:

NS—NS 8V X 8\, = 35 ©® 28 ® 1 g,uua Bm/a o

R-R 8; ® 8,/ = p-forms RR-fields
NS-R 8, ® 8s/c = 85/C D 565/C \UM’ A
R-NS 8. ®8, =8, D56, v, N
» RR-fluxes:

» Tensor decomposition:

8.28.=CcHaqcO® A
8.28.=COgpc@qgc® 1B
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Fluxes in the closed string spectrum

» Type Il closed string spectrum:

NS—NS 8V X 8\, = 35 ©® 28 ® 1 g,uua Bm/a o

R-R 8; ® 8,/ = p-forms RR-fields
NS-R 8, ® 8s/c = 85/C D 565/C \UM’ A
R-NS 8. ®8, =8, D56, v, N
» RR-fluxes:

» Tensor decomposition:

8.28.=CcHaqcO® A
8.28.=COgpc@qgc® 1B

» Take RR-fields as potentials: F("*1) = dC(")
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Fluxes in the closed string spectrum

» Type Il closed string spectrum:

NS—NS 8V X 8\, = 35 ©® 28 ® 1 g,uua Bm/a o

R-R 8; ® 8,/ = p-forms RR-fields
NS-R 8, ® 8s/c = 85/C D 565/C \UM’ A
R-NS 8. ®8, =8, D56, v, N
» RR-fluxes:

» Tensor decomposition:
8:28.=CWgcl A
8. 28, =COg0c®gpc® 1B

» Take RR-fields as potentials: F("*1) = dC(")
» H-flux: H=dB
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Flux in Mg

» Take electrodynamics as inspiration: field strength F(?)

> Fluxes can wrap cycles in the internal manifold.
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Fluxes and geometry |

» Flux lines — energy density
» Decreasing volume — increasing density — “pressure”

» Mathematically: Derive equations of motion from action and
find for example

1 3
Re + §g3|F2|2 +5 (82|Fol> = [H*) =0
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Fluxes and geometry Il

» Supersymmetry variation reloaded:

1 n
5.V, = (vu + 87?/;%) €+ —eq) Z 741‘ @M, Pre
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Fluxes and geometry I

» Supersymmetry variation reloaded:
1
5.V, = (vu + 87?/;%) €+ —eq) Z 741‘ @M, Pre

» Decompose derivative of the spinor,
V. = (torsion classes) # 0

= Fluxes induce torsion!
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Flux

Torsion?

String theory cations and geometry in string theory



Torsion!

Classification of Mg with respect to its torsion:
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Torsion!

Classification of Mg with respect to its torsion:
» Complex
» Symplectic
» Half-flat
» Special Hermitean
> Nearly Kahler
> Almost Kahler
» Kahler
» Conformal Calabi-Yau
» Calabi-Yau
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Fluxes and geometry Il

Geometry also affects the choice of the fluxes:

» Dirac quantisation condition

/ FP =N, cZ
Zp

» Values are determined by integrals over cycles

» Number of different cycles is determined by topological
features of Mg
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Compactification

Compactification?
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Compactification

/dlox (10d) — /d4x/d6x (4d) - (6d)
= (number) -/d4x (4d)
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Compactification

Geometry and compactification |

> A type Il example:

1
S 1 /dlox e 2%/ g <R+4]d¢|2 — 2\H|2)

T o2
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Compactification

Geometry and compactification |

> A type Il example:

1
S 1 /dlox e 2%/ g <R+4]d¢|2 — 2\H|2)

T o2

» Defining two moduli:
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Compactification

Geometry and compactification |

> A type Il example:

1
S 1 /dlox e 2%/ g <R+4]d¢|2 — 2\H|2)

T o2

» Defining two moduli:

» Volume: g; — gig-o)p
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Compactification

Geometry and compactification |

> A type Il example:

1
S 1 /dlox e 2%/ g <R+4]d¢|2 — 2\H|2)

T o2

» Defining two moduli:
» Volume: g; — gig.o)p

» Dilaton: e¢ — e *”e=% and o = p3/2e=?
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Compactification

Geometry and compactification |

> A type Il example:

S 1 /dlox e 2%/ g <R+4]d¢|2 — ;\H|2)

T o2

» Defining two moduli:
» Volume: g; — gl.g.o)p
» Dilaton: e¢ — e *”e=% and o = p3/2e=?

» Integrating out the internal dimensions:

, o 1 5,
S = Mf/d4x\/|gw| <R4+k|n—|—a 2p 1R6—§a 2p 3|H]2>
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that
» respect the characteristics of the manifold and
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:
» Size deformations (so-called K&hler moduli)

P. Patalong, String theory group | Flux compactifications and geometry in string theory



Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:

» Size deformations (so-called K&hler moduli)
» Shape deformations (so-called complex structure moduli)
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:

» Size deformations (so-called K&hler moduli)
» Shape deformations (so-called complex structure moduli)

» Fluxes can
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:

» Size deformations (so-called K&hler moduli)
» Shape deformations (so-called complex structure moduli)

» Fluxes can
» make even more deformations possible and
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Compactification

Geometry and compactification Il

» Take into account more involved deformations that

> respect the characteristics of the manifold and
» preserve the supersymmetry conditions.

» For a Calabi-Yau manifold:

» Size deformations (so-called K&hler moduli)
» Shape deformations (so-called complex structure moduli)

» Fluxes can

» make even more deformations possible and
» give rise to masses for moduli.
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Compactification

Take-away message

Fluxes —  Internal geometry —  4-dimensional theory
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