Young Scientist Workshop 2011

Wildbad Kreuth, July 25-29

MAXIMALLY GAUGED

FLAVOUR SYMMETRIES

Maria Valentina Carlucci
Technische Universitüt München

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL
ON ELEMENTARY PARTICLE PHYSICS

OUTLINE

- Introduction: Flavour Models
- Building a model with Gauged Flavour Symmetries
- Characteristics and phenomenology of the model
- Conclusions and Outlook

INTRODUCTION

FLAVOUR SYMMETRY...

$$
\mathcal{G}_{F}=U(3)_{Q_{L}} \times U(3)_{U_{R}} \times U(3)_{D_{R}}
$$

... AND ITS BREAKING

$$
\mathcal{L}_{Y}=-\bar{Q}_{L} Y_{d} D_{R} H-\bar{Q}_{L} Y_{u} U_{R} H^{c}
$$

$$
\mathcal{G}_{F} \rightarrow U(1)_{B} \times U(1)_{Y}
$$

FLAVOUR MODELS

Why three generations?

Why such a large hierarchy?

MOTIVATIONS FOR FLAVOUR MODELS - I

Regularities often hide an undelying structure.

MOTIVATIONS FOR FLAVOUR MODELS - II

The Standard Model needs an UV completion.

Theory

- Quadratic divergence of the Higgs mass
- Landau pole / vacuum instability: possible internal inconsistency
- Structure of the Yukawa coupling

> Experiments

- Where is the Higgs boson?
- Not enough CP violation
- Dark matter
- Gravity

MOTIVATIONS FOR FLAVOUR MODELS - III

Interesting phenomenology to compare with the hints of New Physics from experiments.

"... too early to despair, enough for depressing..." (G. Altarelli, a few days ago)

BUILDING A MODEL WITH GAUGED FLAVOUR SYMMETRIES

An Analogy with Something We (should) Know Well

$$
\begin{aligned}
& \text { Invariant under gauge } S U(2)_{L} x U(1)_{Y} \quad \text { Breaks gauge } S U(2)_{L} x U(1)_{Y}
\end{aligned}
$$

- Assume that $\operatorname{SU}(2)_{L} x U(1)_{Y}$ is an exact symmetry of Nature
- Introduce a new scalar field H that gets a vev which breaks $S U(2)_{L} x U(1)_{Y}$

Invariant under gauge $S U(2)_{L} x U(1)_{Y}$
$\mathscr{L}=\sum_{\text {fermions }} \bar{\Psi} i \not D \Psi-\sum_{\text {gauge bosons }} \operatorname{Tr}\left[A_{\mu \nu} A^{\mu \nu}\right]-\left(D_{\mu} H\right)^{2}+V(H)-\sum_{\text {fermions }} \bar{\Psi}_{L} y \Psi_{R} H$

PROMOTING FLAVOUR SYMMETRY

$$
\mathscr{L}=\sum_{\text {fermions }} \bar{\Psi} i \not D \Psi-\sum_{\text {gauge bosons }} \operatorname{Tr}\left[A_{\mu \nu} A^{\mu \nu}\right]-\left(D_{\mu} H\right)^{2}+V(H)
$$

Invariant under global G_{F}

Breaks global G_{F}

- Assume that G_{F} is an exact symmetry of Nature
- Introduce two new scalar fields Y_{U}, Y_{D} that get vevs which break G_{F}

$$
\begin{aligned}
\mathscr{L} & =\sum_{\text {fermions }} \bar{\Psi} i \not D \Psi-\sum_{\text {gauge bosons }} \operatorname{Tr}\left[A_{\mu \nu} A^{\mu \nu}\right]-\left(D_{\mu} H\right)^{2} \\
-\left(D_{\mu} Y_{U}\right)^{2}-\left(D_{\mu} Y_{D}\right)^{2}-V\left(H, Y_{U}, Y_{D}\right) & +f\left(Q_{L}, U_{R}, D_{R} ; H, Y_{U}, Y_{D}\right)
\end{aligned}
$$

GAUGING FLAVOUR SYMMETRY

Spontaneous breaking of global flavour symmetry

Goldstone bosons which mediate Flavour Changing Neutral Currents

We must assume that G_{F} is a gauge symmetry.

$$
\begin{array}{ccccc}
S U(3)_{Q_{L}} & \times & S U(3)_{U_{R}} & \times & S U(3)_{D_{R}} \\
\downarrow & & \downarrow & \downarrow \\
\left(A_{Q}^{a}\right)_{\mu} & & \left(A_{U}^{a}\right)_{\mu} & & \left(A_{D}^{a}\right)_{\mu}
\end{array}
$$

$\partial_{\mu} \longrightarrow \partial_{\mu}-i g_{Q} N_{Q} \sum_{a=1}^{8}\left(A_{Q}^{a}\right)_{\mu} \frac{\lambda^{a}}{2}-i g_{U} N_{U} \sum_{a=1}^{8}\left(A_{U}^{a}\right)_{\mu} \frac{\lambda^{a}}{2}-i g_{D} N_{D} \sum_{a=1}^{8}\left(A_{D}^{a}\right)_{\mu} \frac{\lambda^{a}}{2}$

PROBLEM I: TREE-LEVELFCNCS

Fermion mass terms: $\langle H\rangle\left\langle Y_{D}\right\rangle \bar{Q}_{L} D_{R} \quad \longrightarrow \quad\left\langle Y_{F}\right\rangle \propto$ SM Yukawas

Boson mass terms: $\quad\langle H\rangle^{2}\left\langle Y_{D}\right\rangle^{2}\left(A_{D}\right)_{\mu}\left(A_{D}\right)^{\mu} \longrightarrow m_{A_{F}} \propto$ SM Yukawas

$$
\propto \frac{1}{y_{d}^{2} y_{s}^{2}}
$$

Problem II: Anomalies

Anomaly:

a symmetry of the classical action is destroyed by loop corrections.

A gauge anomaly leads to the inconsistency of the theory!

Using group theory we can say if a theory is anomaly free:

$$
\mathcal{A}^{a b c}=\operatorname{Tr}\left[t^{a}\left\{t^{b}, t^{c}\right\}\right]
$$

The theory we have built until now is anomalous.

SOLUTION: NEW FERMIONS

$$
\Psi_{u}=\binom{\Psi_{u L}}{\Psi_{u R}} \quad \Psi_{d}=\binom{\Psi_{d L}}{\Psi_{d R}}
$$

SM fermion mass terms: $\quad \frac{\langle H\rangle}{\left\langle Y_{D}\right\rangle} \bar{Q}_{L} D_{R} \quad \longrightarrow \quad\left\langle Y_{F}\right\rangle \propto \frac{1}{\text { SM Yukawas }} \quad \begin{aligned} & \text { Inverted } \\ & \text { hierarchy }\end{aligned}$

Boson mass terms: $\langle H\rangle^{2}\left\langle Y_{D}\right\rangle^{2}\left(A_{D}\right)_{\mu}\left(A_{D}\right)^{\mu} \longrightarrow m_{A_{F}} \propto \frac{1}{\text { SM Yukawas }}$

$\propto \quad y_{d}^{2} y_{s}^{2}$

CHARACTERISTICS AND

Phenomenology of the Model

PARTICLECONTENT

	EW Group		Flavour Group			
	$S U(2)_{L}$	$U(1)_{Y}$	$S U(3)_{Q}$	$S U(3)_{U}$	$S U(3)_{D}$	$S U(3)_{c}$
Q_{L}	2	$1 / 6$	3	1	1	3
U_{R}	1	$2 / 3$	1	3	1	3
D_{R}	1	$-1 / 3$	1	1	3	3
$\Psi_{u L}$	1	$2 / 3$	1	3	1	3
$\Psi_{d L}$	1	$-1 / 3$	1	1	3	3
$\Psi_{u R}$	1	$2 / 3$	3	1	1	3
$\Psi_{d R}$	1	$-1 / 3$	3	1	1	3
H	2	0	1	1	1	1
Y_{U}	1	0	$\overline{3}$	3	1	1
Y_{D}	1	$1 / 2$	$\overline{3}$	1	3	1
Gauge	$A, W^{ \pm}, Z$	A_{Q}^{a}	A_{U}^{a}	A_{D}^{a}	g^{a}	
Bosons						

FERMION SPECTRUM AND BOSON SPECTRUM

MAIN DIFFERENCES IN THE SM SECTOR

- $V_{\text {CKM }}$ is not unitary:

$$
\bar{u}_{L}\left(c_{u_{L}} V c_{d_{L}}\right) \gamma^{\mu} d_{L}+\bar{u}_{L}\left(c_{u_{L}} V s_{d_{L}}\right) \gamma^{\mu} d_{L}^{\prime}+\bar{u}_{L}^{\prime}\left(s_{u_{L}} V c_{d_{L}}\right) \gamma^{\mu} d_{L}+\bar{u}_{L}^{\prime}\left(s_{u_{L}} V s_{d_{L}}\right) \gamma^{\mu} d_{L}^{\prime}
$$

- The coupling of left handed quarks to the Z is modified:

$$
\bar{u}_{L}\left(T_{3}^{u} c_{u_{L}}^{2}-s_{w}^{2} Q_{u}\right) \gamma^{\mu} u_{L}+\bar{u}_{L}\left(T_{3}^{u} c_{u_{L}} s_{u_{L}}\right) \gamma^{\mu} u_{L}^{\prime}+\bar{u}_{L}^{\prime}\left(T_{3}^{u} s_{u_{L}} c_{u_{L}}\right) \gamma^{\mu} u_{L}+\bar{u}_{L}^{\prime}\left(T_{3}^{u} s_{u_{L}}^{2}-s_{w}^{2} Q_{u}\right) \gamma^{\mu} u_{L}^{\prime}
$$

- The couplings of quarks to the Higgs is modified:

$$
\frac{1}{\sqrt{2}} \lambda_{u} h\left[-\bar{t}_{L} c_{u_{L}} s_{u_{R}} t_{R}+\bar{t}_{L} c_{u_{L}} c_{u_{R}} t_{R}^{\prime}-\bar{t}_{L}^{\prime} s_{u_{L}} s_{u_{R}} t_{R}+\bar{t}_{L}^{\prime} s_{u_{L}} c_{u_{R}} t_{R}^{\prime}\right]+(u \rightarrow d)+\text { h.c. }
$$

PHENOMENOLOGICAL TESTS

- FCNCs: $\Delta F=2$

- FCNCs: $b \rightarrow s \gamma$

- New CP-violating phases

- Z penguins

CONCLUSIONS

CONCLUSIONS

- The origin of flavour is still a mystery.
- Waiting for hints from experiments, people is working with creativity to build flavour models.
- For example, flavour could be and exact gauge symmetry of Nature that is spontaneously broken by vacuum.
- We are testing the consequencies of this fascinating idea.

THANKS

