Creation of High Energetic Neutrons and Aging Studies with Muon Detectors

Alexander Ruschke

LS Schaile, LMU München

Deutsche Forschungsgemeinschaft

DFG

29.7.2011

Wildbad Kreuth

Outline

- 1. motivation
- 2. ion beam preparation + pulse shape discrimination
- 3. neutron reactions and properties
- 4. aging studies at MDT tubes
- 5. summary & outlook

Background Hit Rates of γ 's and Neutrons at L = 10³⁴ 1/cm²s

simulation for LHC L =10³⁴ 1/cm^{2*}s design Iuminosity with safety factor 5 density of 5*10⁶ Hz/cm²

Wildbad Kreuth

Impact of y Background

29.7.2011

Wildbad Kreuth

Munich Tandem Laboratory

tandem accelerator 14MV

29.7.2011

Wildbad Kreuth

Pulsed Beams with Time Structure Time of Flight(TOF)

29.7.2011

Wildbad Kreuth

Neutron-Detector [PSD]

glass plate

bubbling with nitrogen gas

cell contains 370ml of liquid scintillator BC-501-A

aluminum cell: - aluminum 3mm thick - 90mm diameter

- 50mm depth
- white coating of inner walls
- 2 " photo multiplier tube XP 2262 B
- liquid scintillator BC-501A
- 7 detectors were built and are functional
- data acquisition with QDC (charge to digital converter)

29.7.2011

Wildbad Kreuth

Neutron Identification

pulse shape discrimination [PSD] in liquid scintillator (CH,)

Production and Characterization of High Energetic Neutrons

d-Breakup on Nuclear Potential

- motivation:
 - low binding energy 2.2 MeV
 - 20 MeV deuteron on target

- n-energy-determination:
 - pulsed ion beam
 - time of flight method (TOF)

Neutron Energy @ d-Breakup

Neutron Energy @ α - Be - Reaction

Neutron Flux Density

29.7.2011

Wildbad Kreuth

Distance & Angle Dependence

a factor of 2, irradiation of a large area is possible, with neutron fluxes density up to 5 ° 10⁶ Hz/cm2

Neutron Irradiation of New Detectors

Irradiation Area with continous Neutron flux

Irradiated area 21.21 cm²

- test of micromega detectors (J.Bortfeldt)
- test of 15 mm MDT tubes

Wildbad Kreuth

Aging Study of Alternative Drift Gas

- Ar $CO_2 N_2$ 96:3:1% promising drift gas
- almost linear, 35% faster than Ar CO₂
- 20 MeV protons, 105 nA dc for 6 hours
- beam spot : 7cm ° 1cm at 8 Hz (wobbler)
- tube current 340 µA @ 3080 V →
 1 C / cm ≈ QC 1 lifetime of ATLAS

29.7.2011

Analysis after Irradiation

control measurement in laboratory using cosmic muons with standard drift gas Ar CO, 93:7%:

- TDC spectra identical
- ADC spectra identical
- number of counts identical
- same measurement time

NO AGING OBSERVED

same result comparing not irradiated tube

Summary & Outlook

<u>2 reactions to produce MeV neutrons</u>

- d + Be 10 MeV (1-20MeV) 50 ° 10⁵ Hz/cm²
- α + Be 4 MeV (broad) 5 \circ 10⁵Hz/cm² (few γ particle) LHC limits can be achieved

20 MeV protons for aging studies and high rate studies beam spots of 1 mm² – 8 ° 1 cm² available

- optical beam control: quartz glass
- p-beam intensities between $fA \mu A$
- aging study of linear and fast drift gas Ar CO₂N₂

NO aging observed

more experiments with developed and further improved setup

High Rate Capability of d = 15 mm Drift Tubes

- production of 400 keV signals in MDT drift tubes with well focused proton beam and high rates
- beam spot = 7 cm

 5 mm at 200 Hz (z
 y) (wobbler)
- position control: scintillation light in quartz

Wildbad Kreuth

Alexander Ruschke

7cm

Proton Irradiation of 15mm Tubes

Wildbad Kreuth

PSD [Electronic]

Schematic diagram of PSD-Electronic

PSD = pulse shape discrimination QDC = charge to digital converter FIFO = fan in fan out

I-O = input -output register

29.7.2011

Oscilloscope picture of PSD

Wildbad Kreuth

Ch2

tail

pulse

Determination of Beam Currents

Cosmic Ray Facility and SiPM's

Wildbad Kreuth

Summary & Outlook

2 reactions to produce MeV neutrons

• d + Be 10 MeV (1-20MeV) $50 \circ 10^5$ Hz/cm² • α + Be 4 MeV (broad) $5 \circ 10^5$ Hz/cm² (few γ - particle) LHC limits can be achieved

> 20 MeV protons for aging studies and high rate studies beam spots of 1 mm² – 8 ∘ 1 cm² available

- optical beam control: quartz glass
- p-beam intensities between $pA \mu A$
- space charge effects in 15 mm drift tubes high rates in chambers
 O (10⁷Hz)
- aging study of linear and fast drift gas Ar CO₂ N₂

NO aging observed

more experiments with developed and further improved setup

Outline

- 1. motivation
- 2. ion beam preparation + pulse shape discrimination
- 3. neutron reactions and properties
- 4. aging studies at MDT tubes
- 5. high rate irradiation of [15 mm] tube chamber
- 6. silicon photo-multipliers
- 7. summary & outlook

Neutron Energy @ α - Be - Reaction

motivation: $\alpha + {}^{3}_{4}Be \longrightarrow {}^{12}_{6}C + n + 5.709 MeV$ (exotherm) Idea: Q-Value 5.709 MeV + 30 MeV α - particle \longrightarrow 35 MeV neutrons...?

31.3.2011

DPG -Tagung Karlsruhe