# Top Quark Physics With The ATLAS Detector

Young Scientist Workshop 2011

Stefanie Adomeit

LMU Munich

July 26, 2011

# Outline

#### 1 LHC and ATLAS

- 2  $t\bar{t}$  Production and Identification
- 3 Top Mass Measurement

#### 4 Conclusions

# The Large Hadron Collider



- proton-proton collider
- designed for center of mass energy of  $\sqrt{s}$ =14 TeV (currently  $\sqrt{s}$ =7 TeV) design luminosity of  $10^{34}$ cm<sup>-2</sup>s<sup>-1</sup>
- 4 main experiments at collision points: ATLAS, CMS (multipurpose detectors), LHCb and ALICE

## The ATLAS Detector

inner detector: track reconstruction

electromagnetic/hadronic calorimeter:

energy measurement of electrons, positrons, photons, hadrons

muon spectrometer: precise standalone muon momentum measurement



#### Top-Antitop Production at LHC

top pairs are produced via

- gluon-gluon fusion
- 2 quark-antiquark annihilation

due to the high center of mass energy (currently 7 TeV at LHC) the gluons (in the colliding protons) carry a large fraction of the momentum

 $\rightarrow$  gluon-gluon fusion main production process



 $t \overline{t}$  poduction via gluon fusion



 $t\overline{t}$  poduction via quark-antiquark annihilation

## Top-Antitop Production at LHC



data recorded in 2011:  $\int L \approx 1.4 \text{ fb}^{-1}$ 

top-antitop pairs in 2011 data:  $\approx$  200000



Top Quark Physics With The ATLAS Detector

## **Top-Antitop Decay Channels**

- top quark lifetime:  $\approx 10^{-24}$ s  $\rightarrow$  too short for hadronization  $\rightarrow$  need to identify top quarks via their decay products
- Standard Model prediction:
  - $t{\rightarrow}$  W + b ( $\approx$  100%)
  - $ightarrow t ar{t}$  decay topology determined by W-decay
    - leptonic: W ightarrow e,  $\mu$ , au+
      u
    - hadronic:  $W \rightarrow q\bar{q}$
- 3 tt decay channels:
  - all-hadronic: large BR but large QCD-background
  - semi-leptonic: still good statistics, moderate background
  - di-leptonic: small background, small BR
- will exclude  $\tau$  decays







# Semileptonic Top-Antitop Decays: Signal



- 1 lepton (e,  $\mu$ )
- $\nu$ : cannot be detected  $\rightarrow$  missing transverse energy
- 4 quarks, thereof 2 b-quarks:





quarks/gluons produce bunches of collimated hadrons  $\rightarrow$  4 jets b-quarks/b-jets can be identified due to their specific properties (long b-hadron lifetime  $\rightarrow$  secondary vertex,...)  $\rightarrow$  2 b-jets

Conclusions

# Semileptonic Top-Antitop Decays: Signal



Top Quark Physics With The ATLAS Detector

Conclusions

# Semileptonic Top-Antitop Decays: Backgrounds



#### W+jets

 leptonically decaying W + jets from initial and final state radiation



#### single top

- singly produced top (together with a bottom quark) via weak, charged-current interactions
- additional I/FSR jets



#### QCD

- multijet events + fake leptons (e.g. leptons from weak decays in b-jets)
- not very likely to pass semi-leptonic event selection but high production cross section

# Top Mass Measurement Using Semileptonic $t\bar{t}$ Events

Selecting semileptonic  $t\bar{t}$  events

- rejection of non-collision background
- **2** rejection of non- $t\bar{t}$  events by requiring
  - exactly one isolated lepton
  - missing transverse energy
  - at least 4 jets, at least 1 b-tagged jet
  - $\bullet$  transverse W-mass (reconstructed from lepton and  $\mathsf{E}_{\mathcal{T}}^{\textit{miss}}$  ) within predifined window

# Reconstructing the Top Mass Peak

- jets from the top-decay are closer to each other (smaller  $\Delta\phi)$  w.r.t. the remaining jets
- the 3 jets stemming from the top-decay should therefore have the highest combined  $p_T$  (= $p_T$  of vector sum)



# Calibrating The Top Mass

idea: use W-mass to calibrate the top mass peak:

$$m_{top} = \frac{m_{3-jet}}{m_{2-jet}} m_W \tag{1}$$



## Possible Improvement...

- in order to reconstruct the top mass peak we need to find the three jets coming from the hadronically decaying top
- in  $t\overline{t}$  events we have
  - one additional b-jet from the second top-quark
  - additional (gluon) jets from initial and final state radiation

idea: try to identify gluon jets to improve the precission of the top mass measurement



Top Quark Physics With The ATLAS Detector

# Differences Between (Light) Quark and Gluon Jets

gluon jets tend to ...

- ...be wider, i.e. have larger values of  $\sum_{\substack{constituents}} \frac{p_{T,const} \times \Delta R_{const,jet}}{p_T^{jet}}$
- $\bullet$  ...have more (softer) particles  $\rightarrow$  larger number of tracks associated with jet

than light quark jets (ATLAS-COM-CONF-2011-056)





# Conclusions and Outlook

- LHC produces large number of top-antitop-pairs
- semi-leptonic channel = golden channel: moderate background, good statistics
- identifying gluon jets might be a useful tool when measuring the top mass



