MSSM: Status & Forecast Part II

Young Scientists Workshop 2011 Wildbad Kreuth

Jonas M. Lindert Max-Planck-Institut für Physik

Outline

- Pre-LHC
- Status Summer 2011
- Weather Forecast

Disclaimer: I'm not going to explain all new exclusion limits -> ask an experimentalist!

- "SUSY sits just around the corner"
- I...according to global fits within the CMSSM (and other constrained models) done by many different groups: MasterCode, Fittino, SFitter and more..
- Fit inputs: electroweak precision observables (EWPO), flavor-(especially B-) observables, relic density

¹ "SUSY sits just around the corner".

] Global χ^2 likelihood fit (parameter space sampling usually via MCs).

... mostly driven by one observable: $(g-2)|_{\mu}$

 $a_{\mu}^{\text{MSSM}} \propto \tan \beta \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$

[Bechle et. al., 2008]

... mostly driven by one observable: $(g-2)|_{\mu}$

[Bechle et. al., 2008]

STATUS SUMMER 2011 Possible LHC Signatures

Missing ET signatures:

- jets + missing transverse energy
- assumptions

Few

Many

assumptions

- + I lepton
 - + 2 lepton (OSSF/SSSF/)
 - + more leptons (or without hard jets)
 - + photons
 - b-quark jets

Non Missing ET signatures:

- Charged Massive Particles (metastable)
- R-hadrons
- jets + leptons (R-parity violating SUSY)

Vague

conclusions

★How to make sure all parameter regions are covered?

Always a trade-off!

SUSY

STATUS SUMMER 2011 Possible LHC Signatures

Missing ET signatures:

Non Missing ET signatures:

Charged Massive Particles (metastable)

R-hadrons

jets + leptons (R-parity violating SUSY)

Two Questions:

SUSY

* How to interpret exclusions? *How to make sure all parameter regions are covered?

Always a trade-off!

STATUS SUMMER 2011 Simplified Model

jets+MET (>2j, >3j, >4j combined)

"No excess over SM backgrounds is observed"

"Light" squarks and gluinos constrained to be > 800-1050 GeV

Signal Region	≥ 2 jets	\geq 3 jets	\geq 4 jets	High mass
$E_{ m T}^{ m miss}$	> 130	> 130	> 130	> 130
Leading jet $p_{\rm T}$	> 130	> 130	> 130	> 130
Second jet $p_{\rm T}$	> 40	> 40	> 40	> 80
Third jet $p_{\rm T}$	-	> 40	> 40	> 80
Fourth jet $p_{\rm T}$	_	_	> 40	> 80
$\Delta \phi$ (jet, $E_{\rm T}^{\rm miss}$) _{min}	> 0.4	> 0.4	> 0.4	> 0.4
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.3	> 0.25	> 0.25	> 0.2
$m_{\rm eff}$ [GeV]	> 1000	> 1000	> 500/1000	> 1100

$$m_{eff} \equiv \sum_{i=1}^{n} \left| \mathbf{p}_{T}^{i} \right| + E_{T}^{miss}$$

[Taffard, EPS 2011]

These are 'fairly' modelindependent results!!

<u>MSUGRA/CMSSM $A_0=0$, tan $\beta=10$, $\mu>0$ </u>

This is also 'fairly' model-independent !!

(when correctly interpreted)

Dilepton channel (OSSF-OSDF). MSSM PhenoGrid2 800 m_q [GeV] *********************** Observed limit 95% CL (Comp. spectrum): 750 Median expected limit (Comp. spectrum) Observed limit 95% CL (Light neutralino) 700 ----- Median expected limit (Light neutralino) ATLAS L^{int} = 35 pb⁻¹, vs 7 TeV 650 2-lepton flavour submaction analysis 600 550 500 450 400 350 300 450 500 550 600 650 700 750 800 350 400 m_ã [GeV]

Event selection:

Exactly 2 leptons, p_l^T > 20 GeV
 Opposite-sign (OS)/Same-sign (SS)
 E_T^{miss}>100(150) GeV for SS(OS)

+ jets!

Compress Spectrum (CS) $m_{\tilde{\chi}_{2}^{0}} = M - 50 \text{ GeV}; m_{\tilde{\chi}_{1}^{0}} = M - 150 \text{ GeV}; m_{\tilde{l}_{L}} = M - 100 \text{ GeV}$ \checkmark With M=min(m_g,m_q) \rightarrow soft final state kinematics Light neutrino (LN) $m_{\tilde{\chi}_{2}^{0}} = M - 100 \text{ GeV}; m_{\tilde{\chi}_{1}^{0}} = 100 \text{ GeV}; m_{\tilde{l}_{L}} = M / 2 \text{ GeV}$ \checkmark \rightarrow harder kinematics

For larger statistics interpretation within direct electroweakino production feasible. -> omit any jet cuts.

[Taffard, EPS 2011] Much weaker limits! (not just due to less statistics)

Not just light squark and gluinos are being produced at the LHC!

- Searches with missing ET assume neutralino DM.
- But MSSM also offers other well motivated LOSPs, e.g. the lighter stau $\tilde{\tau}_1$. (Now gravitino and/or axino are assumed to be dark matter)
 - 3 Signature: Charged Massive Particles (CHAMP), i.e. slow but high p^{T} . Clear signature, hardly any backgrounds.

CMS

Tk + TOF

- stop

🔫 gluino; 50% gg

🗕 gluino; 10% gg

1000 Mass (GeV/c²)

--- GMSB stau

95% C.L. mass limits GMSB Stau:293 GeV Stop: 620 GeV

[Chen, EPS 2011]

- Not only the LHC directly challenges the SUSY parameter space.
- Strong new limits also from direct DM searches, e.g., XENON100.

[Bechle et. al., 2011]

[Bechle et. al., 2011]

- Tension is building up in the global fits of constrained models (larger χ^2 /ndf for best fit points).
- However, also the CMSSM will survive this and probably also the next year!
- Less constrained models still feasible for years of LHC exclusions.
- Only crucial measurement (as it has always been): $m_h \lesssim 140~{\rm GeV}$ for the MSSM and $m_h \lesssim 200~{\rm GeV}$ for extended Models (beyond NMSSM).

possible ideas where SUSY is hiding:

"just around the corner";-)

- anon-universal gaugino masses -> heavy colored spectrum still in agreement with $(g-2)|_{\mu}$.
- non-universal scalar masses -> (flavor) **split SUSY** with light third generation squarks and a not too heavy gluino (light \tilde{t}_1 necessary to solve hierarchy problem; possible flavor issues).
- degenerate spectra, i.e., small mass splittings: large x-section but low acceptance (low scale SUSY breaking required).

such loopholes have to be explored with more statistics!

- Once SUSY is discovered (next year? after the upgrade to 14TeV?) parameters of the underlying model have to determined.
- Observables: Invariant mass distribution endpoints + other kinematical observables.

Additional use of inclusive (rate) observables necessary (especially with early data)

[Dreiner,JL, et. al., 2010]

Few

assumptions

Many

assumptions

Precision calculation of SUSY cross sections, decay rates, distributions necessary!

CONCLUSIONS

- Available (C)MSSM parameter space started to shrink drastically.
- Not finding SUSY early does not make SUSY / the MSSM bad, just make the (constrained) models look bad!
- Possible loopholes have to be explored with more statistics.
- After discovery work just begins.
- Thrilling times ahead. ;-)

THANK YOU!

BACKUP

A COAL !!

Benchmark scenarios with few parameters

Simplified Models

- always a trade-off
- less important as long as only exclusions are produced
- more important when interpreting these exlusions

CMSSM global fit 2010 vs 2011 (XENON100 + LHC 36pb⁻¹)

Model	Min χ^2	Prob	<i>m</i> _{1/2}	<i>m</i> 0	A ₀	$tan(\beta)$	$M_h^{\rm no \ LEP}$
CMSSM	22.5/19	26%	310	60	-60	10	109
post-LHC/Xenon	26.2/20	16%	470	1/0	-780	22	116
NUHM1	20.5/17	25%	240	100	920	7	119
post-LHC/Xenon	24.2/19	19%	530	110	-370	27	118

[Buchmüller et. a., 2011]