p. △g≥źt

The SiMPI detector

silicon photomultipliers with bulk-integrated quench resistor

Young Scientist Workshop, Wildbad Kreuth 2011

Christian Jendrysik

- motivation
- introduction to silicon photomultiplier
- SiMPI concept: Silicon MultiPixel light detector
- first results on SiMPI
- method for determination of non-quenching in SiPMs
- summary & outlook

Motivation for novel photon detectors

Low light level camera in ground-based gamma-ray astronomy

Single tile readout for high granularity in calorimetry

large number of photon detectors for future experiments and applications

halbleiterlabor

Christian Jendrysik

requirements for photon detectors:

- robust and stable
- easy to calibrate
- compact
- low costs
- low power consumption
- insensitive to magnetic fields
- highest possible detection efficiency

SiPM is promising candidate to achieve all requirements

Why silicon photomultipliers (SiPM)?

Semiconductor photodetectors

• pn-junction in reverse bias

incident photon creates e-h-pair

 $photocurrent \propto incident \ photons$

• avalanche photodiode (APD)

biased slightly below breakdown voltage

high electric field \rightarrow single electron can trigger an avalanche

linear mode \rightarrow amplifier

gain ~ 500

Semiconductor photodetectors

+ + + + mpi + halbleiterlabor

• Geiger-APD (U_{bias} > U_{breakdown})

also holes contribute to avalanche generation \rightarrow single photon detection

gain ~ $10^5 - 10^6$

quenching resistor stops discharge

BUT: binary device \rightarrow no information about number of incident photons

 \rightarrow Silicon photomultipliers

Conventional Silicon Photomultiplier – SiPM

- · an array of avalanche photodiodes
 - operated in Geiger mode
 - passive quenching by integrated resistor
 - read out in parallel \rightarrow signal is sum of all fired cells

Conventional Silicon Photomultiplier – SiPM

- an array of avalanche photodiodes
 - operated in Geiger mode ٠
 - passive quenching by integrated resistor ٠
 - ٠

read out in parallel \rightarrow signal is sum of all fired cells

mp halbleiterlabor

avalanche triggered by thermally generated charge carriers \rightarrow high dark count rate

two processes:

- diffusion of minority carriers into high field region
- Schockley-Read-Hall generation due to traps within bandgap (lattice defects)

mpi halbleiterlabor

avalanche triggered by thermally generated charge carriers \rightarrow high dark count rate

two processes:

- diffusion of minority carriers into high field region
- Schockley-Read-Hall generation due to traps within bandgap (lattice defects)

cooling of the device \rightarrow decrease of dark counts by a factor of 2 every 8K

in future:

improvement of technology to reduce defects

halbleiterlabor

hot-carrier luminescence:

in an avalanche breakdown 10⁵ carriers emit in average 1 photon with E > 1.14 eV

A. Lacaita et al, IEEE Trans. Elec. Dev., vol. 4, 1993

solution:

- optical isolation between pixels (trench)
- 2nd *pn*-junction as barrier for contribution of bulk

Advantages:

- no need of polysilicon
- no metal necessary within the array \rightarrow free entrance window for light
- simple technology \rightarrow lower costs
- inherent diffusion barrier against minorities in the bulk → less optical cross talk

Advantages:

- no need of polysilicon
- no metal necessary within the array \rightarrow free entrance window for light
- simple technology \rightarrow lower costs
- inherent diffusion barrier against minorities in the bulk → less optical cross talk

Drawbacks:

- required depth for vertical resistors does not match wafer thickness
- wafer bonding is necessary for big pixel sizes
- significant changes of cell size requires change of the material vertical 'resistor' is a JFET → parabolic IV → longer recovery times

- IV-measurement in reverse bias \rightarrow breakdown voltage
- dark counts
- amplitude spectra
- recovery time (time from 90% 10% of amplitude) $\rightarrow \tau = RC$

IV-measurement & amplitude spectrum

homogeneous breakdown voltage

10x10 array of 135µm pitch @ 253K

@1V overbias

Gain = $6.95 \cdot 10^{6}$

mpi halbleiterlabor

mpi ∕halbleiterlabor

due to non-optimized process sequence ~10MHz/mm² @300K for 4V overbias

NOTE: no optical barriers for cross talk suppression implemented

mpi

Pitch / Gap	Fill factor	Cross talk (2V V _{ob})
130µm / 10µm	85.2%	29%
130µm / 11µm	83.8%	27%
130µm / 12µm	82.4%	25%
130µm / 20µm	71.6%	15%

Pitch / Gap	Fill factor	Cross talk (2V V _{ob})
130µm / 10µm	85.2%	29%
130µm / 11µm	83.8%	27%
130µm / 12µm	82.4%	25%
130µm / 20µm	71.6%	15%

Photon Detection Efficiency estimation:

- Optical entrance window: 90% @400nm
- Geiger efficiency : 50% @ 2V overbias

Pitch / Gap	Fill factor	PDE
130µm / 10µm	85.2%	39%
130µm / 11µm	83.8%	38%
130µm / 12µm	82.4%	37%
130µm / 20µm	71.6%	32%

Pitch / Gap	Fill factor	Cross talk (2V V _{ob})
130µm / 10µm	85.2%	29%
130µm / 11µm	83.8%	27%
130µm / 12µm	82.4%	25%
130µm / 20µm	71.6%	15%

Photon Detection Efficiency estimation:

- Optical entrance window: 90% @400nm
- Geiger efficiency : 50% @ 2V overbias
 90% @ 6V overbias

Pitch / Gap	Fill factor	PDE
130µm / 10µm	85.2%	39% 69%
130µm / 11µm	83.8%	38% <mark>68%</mark>
130µm / 12µm	82.4%	37% <mark>67%</mark>
130µm / 20µm	71.6%	32% <mark>58%</mark>

absolute measurement by spontaneous parametric downconversion (SPDC)

only simultaneous generation of signal & idler photon

mpi halbleiterlabor

absolute measurement by spontaneous parametric downconversion (SPDC)

two setups available @ HLL: 810nm + 569nm

BUT: no sufficient cooling possible at the moment

Results with PDC setup (810nm)

mpi halbleiterlabor

Results with PDC setup (810nm)

halbleiterlabor

Resistors designed for room temperature operation

 \rightarrow limitation of operation voltage (non-quenching)

mpi halbleiterlabor

Increasing overbias \rightarrow maximization of efficiency but avalanche quenching problematic

Asymptotic steady-state value of diode current

 $I_f = \Delta V / R_L$

Cova rule of thumb : quenching condition: $I_f < 20\mu A$

 \rightarrow Is there a way to measure?

Christian Jendrysik

New method for determination of non-quenching of SiPMs

Our approach: compare measured with calculated dark current

$$I_{calc} = DC \cdot N_X \cdot G \cdot e$$

Ratio R = $I_{meas}/I_{calc} >> 1$ indicates non-quenching

Procedure:

- IV-measurement of dark current
- measurements of dark counts *DC* vs. overbias
- measurement of optical crosstalk contribution N_Xvs. overbias (integral of normalized count rate)
- measurement of internal gain G vs. overbias

First results with polysilicon and bulk-integrated resistors

polysilicon resistor:

temperature coefficient dR/dT: negative

low overbias: ratio = 1 \rightarrow good agreement I_{calc} : I_{meas}

high overbias: disproportional increase of ratio \rightarrow initiation dependent on resistance values

bulk-integrated resistor:

temperature coefficient *dR/dT*: positive

low overbias: ratio = 1 \rightarrow good agreement I_{calc} : I_{meas}

high overbias: disproportional increase of ratio \rightarrow initiation dependent on resistance values

Comparision of different SiPMs

Note: Not corrected for afterpulsing

But: 20µA rule of thumb seems not to be sufficient

more precise determination of non-quenching

No fit for all devices → influenced by other parameters?

Further studies and improvements necessary

New detector concept for SiPMs with quench resistors integrated into

the silicon bulk

- no polysilicon resistors, no contacts necessary at the entrance window
- geometrical fill factor is given by the need of cross talk suppression only
- very simple process

Prototype production

- quenching works
- first results very promising

Further studies of the produced sensors (geometry dependence of the sensor performance, PDE, ...) are ongoing

New production to reduce dark counts and implement small pixels (end of 2011?)

Further improve new method for determination of non-quenching of SiPMs

Thanks

PDE = quantum efficiency · fill factor · Geiger efficiency

- quantum efficiency: e-h pair generated in depletion layer, $QE(\lambda)$
- fill factor: fraction of active to total area of device
- Geiger efficiency: avalanche triggered by generated carrier, *GE(E)*

absolute measurement by spontaneous parametric down conversion (SPDC)

two setups with wavelengths 810nm + 569nm

Gain linearity

10x10 array of 135µm pitch @ 253K

Simulations for small pixels

halbleiterlabor

- small pixel for high dynamic range
- simulation for resistor value estimation
- fill factor of 60% achievable (40µm pitch)
- recovery time of about 0.7 μs

Device	Pitch (µm)	V _{break} (V)	R _{Cell} (kΩ)
Hamamatsu 25	25	69.4 (293K)	332
		68.4 (273K)	371
		67.5 (253K)	417
		70.1 (293K)	139
Hamamatsu 50	50	68.9 (273K)	156
		67.6 (253K)	183
Hamamatsu 100	100	70.2 (300K)	125
		68.7 (273K)	145
		67.6 (253K)	163
		66.5 (233K)	190
		77.5 (293K)	700
MEPhl-Pulsar	35	76.2 (273K)	855
		74.9 (253K)	1030
		28.7 (293K)	346
STMicroelectronics	60	28.3 (273K)	364
		27.8 (253K)	389
SiMPI	130 gap 11	35.2 (273K)	340
		34.5 (253K)	294
		33.9 (233K)	263

critical resistance range

 \rightarrow rather unreliable process step

obstacle for incident light

→ fill factor decreased
 → limitation of detection efficiency

Is there different way to do it? Can we use the silicon bulk material?

J. Appl. Physics, Nov., 1980

mpi {∕halbleiterlabor

