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Motivation for novel photon detectors

large number of photon detectors for future experiments and applications

Low light level camera in
ground-based gamma-ray astronomy

Single tile readout for
high granularity in calorimetry
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Why silicon photomultipliers (SiPM)?

requirements for photon detectors:

• robust and stable
• easy to calibrate
• compact
• low costs
• low power consumption
• insensitive to magnetic fields
• highest possible detection efficiency
• …

SiPM is promising candidate to 
achieve all requirements

5mm

2cm

source: SensL
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Semiconductor photodetectors

• pn-junction in reverse bias

incident photon creates e-h-pair

photocurrent ∝ incident photons

• avalanche photodiode (APD)

biased slightly below breakdown voltage

high electric fieldÆ single electron can
trigger an avalanche

linear mode Æ amplifier

gain ~ 500
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Semiconductor photodetectors

• Geiger-APD (Ubias > Ubreakdown)

also holes contribute to avalanche
generationÆ single photon detection

gain ~ 105 – 106

quenching resistor stops discharge

BUT: binary deviceÆ no information
about number of incident photons

Æ Silicon photomultipliers
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Conventional Silicon Photomultiplier – SiPM

• an array of avalanche photodiodes 

• operated in Geiger mode    

• passive quenching by integrated resistor

• read out in parallel    Æ signal is sum of all fired cells

polysilicon
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Drawbacks – dark counts

avalanche triggered by thermally generated 
charge carriers Æ high dark count rate

two processes:
- diffusion of minority carriers into high field

region

- Schockley-Read-Hall generation due to
traps within bandgap (lattice defects)

EC

ET

EV

phonon

phonon
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Drawbacks – dark counts

avalanche triggered by thermally generated 
charge carriers Æ high dark count rate

two processes:
- diffusion of minority carriers into high field

region

- Schockley-Read-Hall generation due to
traps within bandgap (lattice defects)

EC

ET

EV

phonon

phonon

SiMPl
130µm gap 11µm

cooling of the device Æ decrease of dark 
counts by a factor of 2 every 8K

in future:
improvement of technology to reduce 
defects
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Drawbacks – optical cross talk

hot-carrier luminescence:

in an avalanche breakdown 
105 carriers emit in average
1 photon with E > 1.14 eV

A. Lacaita et al, IEEE Trans. Elec. Dev.,vol. 4, 1993

solution:

• optical isolation between pixels (trench)

• 2nd pn-junction as barrier for contribution
of bulk
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SiPM cell components    Æ SiMPl approach 

n+

p+

n-

non-depleted
region

n-

non-depleted
region

n-

depleted gap
region

n

Vbias

n+

p+

resistors

high field

AD

RQ

CD

CC

Vbias
anodes

photon
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SiPM cell components    Æ SiMPl approach 

Vbias

n+

p+

resistors

anodes

Resistor matching 
requires thin wafers !

Æ wafer bonding

<<450µm
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SOI wafers

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness

4. fabricate SiMPl arrays

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness on top side

Industrial partners MPI HLL
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SOI wafers

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness

4. fabricate SiMPl arrays

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness on top side

Industrial partners MPI HLL

6mm

6mm
30x30 arrays

10x10 arrays

7 pixel (flower)
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Advantages and Disadvantages

Advantages:Advantages:
• no need of polysilicon
• no metal necessary within the array Æ free entrance window for light
• simple technology Æ lower costs
• inherent diffusion barrier against minorities in the bulk Æ less optical  cross 

talk
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Advantages and Disadvantages

Advantages:Advantages:
• no need of polysilicon
• no metal necessary within the array Æ free entrance window for light
• simple technology Æ lower costs
• inherent diffusion barrier against minorities in the bulk Æ less optical  cross 

talk

Drawbacks:Drawbacks:
• required depth for vertical resistors does not match wafer thickness
• wafer bonding is necessary for big pixel sizes 
• significant changes of cell size requires change of the material
 vertical ‘resistor‘ is a JFET Æ parabolic IV Æ longer recovery times
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Measurement setup

- IV-measurement in reverse bias Æ breakdown voltage
- dark counts
- amplitude spectra
- recovery time (time from 90% - 10% of amplitude) Æ τ = RC

laser

U

climate chamber
counter
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IV-measurement & amplitude spectrum

homogeneous breakdown voltage 

6 arrays

placed over 6mm distance

10x10 array of 135µm pitch @ 253K

1pe

2pe

3pe

@1V overbias

Gain = 6.95 · 106
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Laser light response 

130μm pitch/gap 10μm
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Dark counts

due to non-optimized process sequence 
~10MHz/mm² @300K for 4V overbias

10x10 array of 130µm pitch @ 233K

normal operation up to 
4V overbias @233K 

overbias > 4V 
Æ non quench condition
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Cross Talk 

NOTE: no optical barriers for cross talk suppression implemented
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Cross Talk 

Pitch / Gap Fill factor Cross talk (2V Vob)
130µm / 10µm 85.2% 29%

130µm / 11µm 83.8% 27%

130µm / 12µm 82.4% 25%

130µm / 20µm 71.6% 15%
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Cross Talk & PDE

Pitch / Gap Fill factor Cross talk (2V Vob)
130µm / 10µm 85.2% 29%

130µm / 11µm 83.8% 27%

130µm / 12µm 82.4% 25%

130µm / 20µm 71.6% 15%

Photon Detection Efficiency estimation: 

• Optical entrance window: 90% @400nm 

• Geiger efficiency : 50% @ 2V overbias

Pitch / Gap Fill factor PDE

130µm / 10µm 85.2% 39%            

130µm / 11µm 83.8% 38%

130µm / 12µm 82.4% 37%

130µm / 20µm 71.6% 32%            
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Cross Talk & PDE

Pitch / Gap Fill factor Cross talk (2V Vob)
130µm / 10µm 85.2% 29%

130µm / 11µm 83.8% 27%

130µm / 12µm 82.4% 25%

130µm / 20µm 71.6% 15%

Photon Detection Efficiency estimation: 

• Optical entrance window: 90% @400nm 

• Geiger efficiency : 50% @ 2V overbias

Pitch / Gap Fill factor PDE

130µm / 10µm 85.2% 39%            

130µm / 11µm 83.8% 38%

130µm / 12µm 82.4% 37%

130µm / 20µm 71.6% 32%            

69%

68%

67%

58%

90% @ 6V overbias
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PDE measurement

only simultaneous generation of signal & idler photon

phase-matching
condition

absolute measurement by spontaneous parametric downconversion (SPDC)
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PDE measurement

absolute measurement by spontaneous parametric downconversion (SPDC)

two setups available @ HLL: 810nm + 569nm

BUT: no sufficient cooling possible at the moment
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Results with PDC setup (810nm)

real coincident DUT pulses
real trigger pulses

PDE = 

Nwin – (twin/toow ) Noow

NT – (nT,dark/nT ) NT
=

Christian Jendrysik Young Scientist Workshop 2011, Wildbad Kreuth 22



Results with PDC setup (810nm)

real coincident DUT pulses
real trigger pulses

PDE = 

Nwin – (twin/toow ) Noow

NT – (nT,dark/nT ) NT
=

planned:
combine with relative efficiency 
measurements (subpixel resolution)

Æ more details next talk
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Temperature dependence of quench resistor

T (°C) 0 -10 -20 -30 -40 -50
R (kΩ) 595 509 473 420 387 348

mobility:

µn(Si) ∝ T-2.4

τ = R·C

Resistors designed for room temperature operation
Æ limitation of operation voltage (non-quenching)
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New method for determination of non-quenching of SiPMs

Asymptotic steady-state value of diode current
If = ΔV / RL

Cova rule of thumb : quenching condition: If < 20µA

Æ Is there a way to measure?

Cova et al., Appl. Opt., vol. 35, no. 12, 1996

Increasing overbias Æ maximization of efficiency but avalanche quenching problematic
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New method for determination of non-quenching of SiPMs

Procedure:

• IV-measurement of dark current

• measurements of dark counts DC vs.
overbias

• measurement of optical crosstalk
contribution NX vs. overbias (integral of
normalized count rate)

• measurement of internal gain G vs.
overbias

Our approach:
compare measured with calculated dark current

Icalc = DC · NX · G · e

Ratio R = Imeas/Icalc >> 1 indicates non-quenching

Christian Jendrysik Young Scientist Workshop 2011, Wildbad Kreuth 25



First results with polysilicon and bulk-integrated resistors

polysilicon resistor:

temperature coefficient dR/dT: negative

low overbias: ratio = 1
Æ good agreement Icalc : Imeas

high overbias: disproportional increase of ratio
Æ initiation dependent on resistance values

bulk-integrated resistor:

temperature coefficient dR/dT: positive

low overbias: ratio = 1
Æ good agreement Icalc : Imeas

high overbias: disproportional increase of ratio
Æ initiation dependent on resistance values

Christian Jendrysik Young Scientist Workshop 2011, Wildbad Kreuth 26



Comparision of different SiPMs

Note:
Not corrected for afterpulsing

But:
20µA rule of thumb seems not 
to be sufficient

more precise determination of 
non-quenching

No fit for all devices Æ
influenced by other 
parameters?

?

(Cova)

Further studies and improvements necessary
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Summary

New detector concept for New detector concept for SiPMsSiPMs with quench resistors integrated into with quench resistors integrated into 
the silicon bulkthe silicon bulk

- no polysilicon resistors, no contacts necessary at the entrance window 
- geometrical fill factor is given by the need of cross talk suppression only
- very simple process

Prototype productionPrototype production
-- quenching worksquenching works
-- first results very promisingfirst results very promising

Further studies of the produced sensors (geometry dependence of the sensor 
performance, PDE, …) are ongoing

New production to reduce dark counts and implement small pixels (end of 2011?)

Further improve new method for determination of non-quenching of SiPMs
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Thanks 



Photon Detection Efficiency

PDE = quantum efficiency · fill factor · Geiger efficiency

• quantum efficiency: e-h pair generated in depletion layer, QE(λ)

• fill factor: fraction of active to total area of device

• Geiger efficiency: avalanche triggered by generated carrier, GE(E)

absolute measurement by spontaneous parametric down conversion (SPDC)

two setups with wavelengths 810nm + 569nm



Gain linearity

10x10 array of 135µm pitch @ 253K
pulse height ∝ Q

Q = e·G = C·ΔU

linear

normal operation



Simulations for small pixels

• small pixel for high dynamic range

• simulation for resistor value estimation

• fill factor of 60% achievable (40µm pitch)

• recovery time of about 0.7 µs

40V

0V



Measured devices

Device Pitch (µm) Vbreak (V) RCell (kΩ)

Hamamatsu 25 25

69.4 (293K)

68.4 (273K)

67.5 (253K)

332

371

417

Hamamatsu 50 50

70.1 (293K)

68.9 (273K)

67.6 (253K)

139

156

183

Hamamatsu 100 100

70.2 (300K)

68.7 (273K)

67.6 (253K)

66.5 (233K)

125

145

163

190

MEPhI-Pulsar 35

77.5 (293K)

76.2 (273K)

74.9 (253K)

700

855

1030

STMicroelectronics 60

28.7 (293K)

28.3 (273K)

27.8 (253K)

346

364

389

SiMPl
130

gap 11

35.2 (273K)

34.5 (253K)

33.9 (233K)

340

294

263



Polysilicon quench resistors

critical resistance rangecritical resistance range

ÆÆ rather unreliable process steprather unreliable process step

obstacle for incident lightobstacle for incident light

ÆÆ fill factor decreasedfill factor decreased
ÆÆ limitation of detection efficiencylimitation of detection efficiency

M. Mohammad et al.

‘Dopant segragation in polycrystalline silicon‘,

J. Appl. Physics, Nov.,1980

Is there different way to do it?
Can we use the silicon bulk material?



Optical cross talk suppression
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Optical cross talk suppression

light Second pn
junction
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