Higgs Hunting at the Tevatron and the LHC

IMPRS/GK Young Scientist Workshop, Wildbad Kreuth 25th July 2011

Michiel Sanders

Ludwig-Maximilians-Universität München

Outline

- What is the Higgs boson ?
- Higgs at hadron colliders
- High mass Higgs boson search
- Low mass Higgs boson search
- Conclusion / Outlook

The Standard Model

- Elementary particles:
 quarks, leptons
- Basic forces: weak, strong, electromagnetic
- Standard model describes all
 - * Based on (local) gauge symmetries
 - \Rightarrow "Force" particles: W[±], Z, photon, gluon

\Rightarrow Massless particles

Mass

- Mass of nucleus $\neq \sum$ mass of protons & neutrons
- Proton/neutron mass: confinement energy, QCD
 - ∗ Masses of light hadrons calculable by (lattice) QCD
 ⇒ Visible mass of the universe explained by QCD
- But: without massive quarks and W, no stable proton

QCD = Quantum Chromodynamics = theory of strong force

The Electroweak Theory

- Dirac:
$$\mathcal{L} = i\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi + m\bar{\psi}\psi$$

– EW based on local $SU(2)_L \otimes U(1)_Y$ gauge symmetry:

$$\begin{aligned} \mathcal{L}_{\mathsf{EW}} &= i\bar{\mathsf{R}}\gamma^{\mu}(\partial_{\mu} + \frac{ig'}{2}YB_{\mu})\mathsf{R} \\ &+ i\bar{\mathsf{L}}\gamma^{\mu}(\partial_{\mu} + \frac{ig'}{2}YB_{\mu} + \frac{ig}{2}\vec{\tau}\cdot\vec{W}_{\mu})\mathsf{L} \\ &- \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}\vec{W}_{\mu\nu}\cdot\vec{W}^{\mu\nu} + \dots \end{aligned}$$

⇒ Gauge-fields B_{μ} , \vec{W}_{μ} : linear combinations of $A_{\mu}, Z_{\mu}, W_{\mu}^{\pm}$ ⇒ Mass terms for fermions or gauge fields forbidden

Spontaneous Symmetry Breaking

- Introduce another field, with a specific potential

$$V(\Phi) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

- \Rightarrow Lowest energy state (vacuum) not invariant
 - \ast Massive W and Z bosons, massless photon
 - * Massive quarks and leptons
 - * New massive particle: Higgs boson

Spontaneous Symmetry Breaking

Complex weak-isospin doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ with Y = 1

$$\mathcal{L}_{\mathsf{H}} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) + \mu^{2}\Phi^{\dagger}\Phi - \lambda(\Phi^{\dagger}\Phi)^{2}$$
$$D_{\mu} = \partial_{\mu} + \frac{ig'}{2}YB_{\mu} + \frac{ig}{2}\vec{\tau}\cdot\vec{W}_{\mu}$$

Ground state breaks $SU(2)_L \otimes U(1)_Y$ symmetry:

$$\Phi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \mu/\sqrt{\lambda} \end{pmatrix}$$

Higgs Mechanism

Expand $\Phi(x)$ around the ground state $\Phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + H(x) \end{pmatrix}$:

$$\begin{split} D_{\mu} \Phi &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu} H \end{pmatrix} + \frac{ig' B_{\mu}}{2\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} + \frac{ig \vec{\tau} \cdot \dot{W}_{\mu}}{2\sqrt{2}} \begin{pmatrix} 0\\ v+H \end{pmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu} H \end{pmatrix} + \frac{i}{2\sqrt{2}} \begin{pmatrix} g(W_{\mu}^{1} - iW_{\mu}^{2})\\ g' B_{\mu} - g W_{\mu}^{3} \end{pmatrix} (v+H) \\ &= \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ \partial_{\mu} H \end{pmatrix} + \frac{i}{2\sqrt{2}} \begin{pmatrix} g\sqrt{2}W_{\mu}^{+}\\ -g Z_{\mu}/\cos\theta_{w} \end{pmatrix} (v+H) \end{split}$$

Higgs Mechanism

$$(D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) = \frac{1}{2}(\partial^{\mu}H)(\partial_{\mu}H) + \frac{g^{2}}{8}\left(\frac{Z_{\mu}Z^{\mu}}{\cos^{2}\theta_{w}} + 2W_{\mu}^{+}W^{-\mu}\right)(v^{2} + 2vH + H^{2})$$

$$\Rightarrow \quad m_W = \frac{gv}{2}, \quad m_Z = \frac{gv}{2\cos\theta_w}, \quad m_A = 0$$

 \Rightarrow Couplings WWH, ZZH, WWHH, ZZHH

Higgs Mechanism

$$V(|\Phi|) = -\mu^2 |\Phi|^2 + \lambda |\Phi|^4$$

= $-\frac{\mu^2}{2}(v+H)^2 + \frac{\mu^2}{4v^2}(v+H)^4$
= $\mu^2 (H^2 + \frac{H^4}{4v^2} + \frac{H^3}{v} - \frac{v^2}{4})$

$$\Rightarrow \quad m_H = \sqrt{2}\mu = \sqrt{2\lambda}v$$

\Rightarrow Couplings *HHH*, *HHHH*

Fermion masses: direct coupling of Φ to fermion fields

10

What Do We Know?

$$v = 246 \text{ GeV}$$
 $m_{\text{H}} = \sqrt{2}\mu = \sqrt{2\lambda}v = ?$

What Do We Know?

- Precision EW measurements at Tevatron, LEP and SLD

- Direct Higgs search results from LEP, Tevatron, LHC

Higgs Production @ Hadron Colliders

- Gluon fusion through a heavy-quark loop

- Weak boson fusion
- VH associated production

Typical Particle Detector: ATLAS

Typical Particle Detector: ATLAS

Higgs at High Mass: $H \rightarrow WW$

- $H \rightarrow WW \rightarrow \ell \nu \ell \nu$
- Gluon fusion and WBF
- Final states with e^+e^-, $\mu^+\mu^-$ or e^\pm\mu^\mp and large $E\!\!\!\!/_{\rm T}$
- Background sources:
 - * Di-boson (WW, WZ, ZZ)
 - * tt, DY di-lepton production
 - * W + mis-identified jet/ γ

Higgs at High Mass: $H \rightarrow WW (D\emptyset)$

- Cannot reconstruct $m_{\rm H}$, but . . .
- Spin correlations: $\Delta \phi(\ell \ell)$ small for $H \rightarrow WW \rightarrow \ell \nu \ell \nu$
- Use "random forests"

Advanced Technique: Random Forest

- Decision tree: recursively cut on kinematic variables
- Random forest: trees with random subsets of variables

Higgs at High Mass: $H \rightarrow WW (D\emptyset)$

- Background and signal vary with number of jets
- \Rightarrow Analyze in jet-multiplicity bins

Combined DØ Higgs Limit

High- and low-mass (WH $\rightarrow \ell \nu b \bar{b}, ZH \rightarrow \ell \ell b \bar{b}, ZH \rightarrow \nu \bar{\nu} b \bar{b}$)

(Old) Combined Tevatron Limit

 \Rightarrow Exclude 158 < $m_{
m H}$ < 175 GeV, 1.6 imes SM at $m_{
m H}$ = 115 GeV

Higgs at High Mass: $H \rightarrow WW$ (ATLAS)

 \Rightarrow Significant sensitivity with little data !

$H \rightarrow WW$ Results (ATLAS)

 \Rightarrow Exclude 158 $< m_{
m H} <$ 186 GeV

$extsf{H} o \gamma\gamma$ (ATLAS)

- High pile-up environment \rightarrow use calorimeter pointing
- Split in categories: detector region, conversion
- Final background estimate: exponential fit

${ m H} ightarrow \gamma \gamma$ Result (ATLAS)

More sensitive than H \rightarrow WW for $m_{\rm H} \lesssim 125~{\rm GeV}$

Combined Atlas Limit

Combined Atlas Limit

Exclude 155 $< m_{\rm H} <$ 190 GeV, 295 $< m_{\rm H} <$ 450 GeV

Conclusion / Outlook

- Need a Higgs boson, or something like it
- Not found yet
- Keep looking. . .

- Discovering something is not the end of the story
- What is mass, really?
- More Higgs on Friday