# Small circles, big circles and branes 

Migael Strydom

Max-Planck-Institut für Physik, München

25 July 2011

## Outline

(1) Small circles

## Outline

(1) Small circles
(2) Big circles

## Outline

(1) Small circles
(2) Big circles
(3) Branes

## Tiny extra dimensions

- Bosonic string theory is $25+1$-dimensional.
- Our universe is 3+1-dimensional.
- We resolve this discrepancy by compactifying the extra dimensions from string theory.



## Scalar fields and extra dimensions



## Strings and extra dimensions

- The string mass also depends on its momentum in the compact dimension, just like a point particle.
- But strings can wind around the compact dimension as well:

- The number of times a string winds is called the winding number, w.
- The winding number also influences the string mass by adding extra tension.


## String mass

- Winding number is conserved, just like momentum:

- Can define momentum in the compact dimension by

$$
p_{L}=\frac{n}{R}+\frac{w R}{\alpha^{\prime}} \quad \quad p_{R}=\frac{n}{R}-\frac{w R}{\alpha^{\prime}} .
$$

- The mass becomes

$$
m^{2}=\frac{n^{2}}{R^{2}}+\frac{w^{2} R^{2}}{\alpha^{\prime 2}}+\frac{2}{\alpha^{\prime}}(N+\tilde{N}-2)
$$

## Some limits

$$
m^{2}=\frac{n^{2}}{R^{2}}+\frac{w^{2} R^{2}}{\alpha^{\prime 2}}+\text { oscillators }
$$

$R \rightarrow \infty$

- Winding states become infinitely massive.
- Compact momentum becomes a continuous spectrum.
$R \rightarrow 0$
- Winding states become a continuous spectrum.
- Compact momentum states become infinitely massive.

In both cases, the spectrum is that of a noncompact dimension!

## A surprising duality

$$
m^{2}=\frac{n^{2}}{R^{2}}+\frac{w^{2} R^{2}}{\alpha^{\prime 2}}+\text { oscillators }
$$

remains unchanged when

$$
R \leftrightarrow \frac{\alpha^{\prime}}{R}, \quad n \leftrightarrow w
$$

and in fact the situations are physically identical!
This is known as $T$-duality.
Small circles are the same as big circles.

## What about open strings?

- Open strings can always be unwrapped - they have no winding number.

- Mass spectrum

$$
m^{2}=\frac{n^{2}}{R^{2}}+\text { oscillators }
$$

is not invariant under $R \leftrightarrow \frac{\alpha^{\prime}}{R}$.

- Is this the end of T-duality?


## Open string end points

- What makes open strings different is the end points.
- There are two types of boundary conditions:

$$
\partial_{\sigma} X=0 \quad \text { (Neumann) } \quad \partial_{\tau} X=0 \quad \text { (Dirichlet) }
$$

- For Neumann boundary conditions, the string endpoints are free to move.
- For Dirichlet boundary conditions, the string endpoints are stuck to a surface, called a D-brane.

When there are no Dirichlet boundary conditions, the string is on a D25-brane that fills all space.

## Putting a D-brane in the compact dimension



Notice:

- The open strings are now stuck. $p^{25}=0$.
- It is now possible to define a winding number.


## We can rescue T-duality for open strings

- $m^{2}=\frac{n^{2}}{R^{2}}+$ oscillators
- Radius $R$
- D25-brane
- Momentum mode $n$
- $m^{2}=\frac{w^{2} R^{2}}{\alpha^{2}}+$ oscillators
- Radius $\frac{\alpha^{\prime}}{R}$
- D24-brane
- Winding number w

We can conclude:
D-branes are a fundamental part of string theory.

## Let's look at D-branes further

- For two D-branes separated by distance $d$,

$$
m^{2}=\frac{d^{2}}{\left(2 \pi \alpha^{\prime}\right)^{2}}+\text { oscillator }
$$

- For massless excitations, each string forms a $U(1)$ gauge field $A_{\mu}$.



## Coincident branes

- Consider a stack of $N$ coincident branes.
- A string can start on brane $i$ and end on brane $j$.
- $\Rightarrow$ there are $N^{2}$ possible strings.
- $\Rightarrow$ there are $N^{2}$ possible $U(1)$ gauge fields.
A $U(1)^{N^{2}}$ gauge symmetry on
 the branes?


## Open string interactions on coincident branes



Because of interactions, the gauge group becomes $U(N)$.

## Open string interactions on coincident branes

- Can label the string ground state as $\left|p^{\mu} ; i j\right\rangle$.
- This label is called a Chan-Paton factor.
- The $U(N)$ symmetry rotates the $N$ indistinguishable branes.


## The Standard Model from D-branes



Source: Zwiebach

## Conclusion

## Small circles

Tiny extra dimensions, winding strings.

## Big circles

T-duality relates small circles to big circles while keeping the physics the same.

## Branes <br> Branes are required for T-duality of open strings. They are also useful for building gauge theories.

## Thank you!


xkcd.com/848/

- B. Zwiebach, A First Course in String Theory
- J. Polchinski, String Theory

