Probing proton acceleration in W51C with MAGIC (An example how to use VHE- γ -Astronomy to detected Cosmic Ray sources)

Julian Krause, Emiliano Carmona and Ignasi Reichardt on behalf of

IMPRS YSW 2011, Wildbad-Kreuth, 27 July 2011

Outline

The big picture

- Cosmic Rays
- Supernova remnants

Very high energy γ -Astronomy

- Imaging Air Cherenkov Technique
- MAGIC
- How to find a source

A prime candidate of a galactic Cosmic ray accelerator
 W51

Cosmic Rays, historical measurements

Discovered by Victor Hess 1912

Cosmic Rays today

Cosmic Rays today

Requirements on galactic CR sources

- provide enough energy
- reproduce observed power-law spectrum
- accelerate CR up to the knee

Supernova remnants

Properties of SNR

- kinetic energy $\approx 10^{51}$ erg (5-20% needed for CR)
- $\bullet\,$ diffusive shock acceleration $\rightarrow\,$ power-law spectrum
- $\bullet\,$ self amplified magnetic fields $\rightarrow\,$ energies up to the knee

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Today

A lot of reasonable and clear hints from both theory and experiments

No proof!

Current status of the origin of GCR

History

- Cosmic Rays detected: 1912 (Hess)
- Acceleration mechanism: 1946 (Fermi)
- SNR's claimed as sources of GCR: 1977-78 (Axford, Krymskii, Blandford & Ostriker, Bell)

Today

A lot of reasonable and clear hints from both theory and experiments

No proof!

Tomorrow?!

A 100 years old question waits to be answered

I believe

	Julian	Krause	(MPP)
--	--------	--------	-------

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution

 - convert CR into γ's
 - γ's point back to interaction point

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar
 B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution
 - γ -rays
 - convert CR into γ's
 - γ 's point back to interaction point

Leptonic Channel

- Bremsstrahlung
 - matter
- Synchroton
 - magnetic fields
- Inverse Compton
 photon fields

From SNR's as CR sources to VHE- γ -rays

Search for CR sources

- Problem
 - CR's are charged
 - non homgeneous intestellar
 B-fields
 - isotropic distribution of CR's spectrum at Earth
- Solution
 - γ-rays
 - convert CR into γ's
 - γ 's point back to interaction point

Leptonic Channel

- Bremsstrahlung
 - matter
- Synchroton
 - magnetic fields
- Inverse Compton
 photon fields

Hadronic Channel

- π⁰-decay
 - matter

Very high energy γ -Astronomy

- Young field of Astronomy
- Energy range GeV-TeV (wavlength $\leq 10^{-8} nm$)
- First source: Crab Nebula 1989 at the Whipple Observatory

Very high energy γ -Astronomy

- Young field of Astronomy
- Energy range GeV-TeV (wavlength $\leq 10^{-8} nm$)
- First source: Crab Nebula 1989 at the Whipple Observatory

General comments

- No object in the universe is hot enough to radiate GeV photons
- Interaction of high energy particels needed
- Most violent objects are typical sources
 - Supernova remnants
 - Pulsars
 - Pulsar wind nebulae
 - Binaries with a compact object
 - Active galactic nuclei

Imaging Air Cherenkov Technique

Stereoscopie

The MAGIC Telescopes

Located on La Palma (Canaries) Roque de los Muchachos 2200 meter a.s.l.

Stereoscopic system of two IACT's Reflector diameter 17 m

- Energy treshold 50 GeV
- Performance > 300 GeV:
 - ▶ sensitivity $\sim 0.8\%$ Crab [50 h]
 - ▶ angular resolution $\sim 0.07 \deg$
 - energy resolution $\sim 17\%$

Detecting a signal

- DAQ-rate \approx 200 Hz
- Gamma-like events rate (>130 GeV) \approx 1.3 Hz
- γ -rate (crab>130 GeV) \approx 0.13 Hz
- background-rate (>130 GeV) $\approx 0.02 \text{ Hz}$
- $\bullet~$ 1% crab source signal/background ratio ≈ 0.065

How to find a source?!

- Separate signal from background
 - Gamma-Hadron separation (like an overall filter)
 - Arrival direction (Excess = Difference between ON-source and OFF-source)

Event discrimination Background gamma proton

Detection plot, so called θ^2 -plot

 θ^2 = (source position minus reconstructed arrival direction)²

grey histogramm = OFF source black points = ON source Crab N_{events} Time = 2.64 h 250 $N_{ce} = 320; N_{-} = 4.0 \pm 2.0$ N_{cr} = 316.0 200 strong source (crab) Significance (N /Voff) = 158.00o Significance (Li&Ma) = 20.15o medium energies 150 Sensitivity = 0.73 ± 0.19 % Crab (~300 GeV) Gamma Rate = 2.00 +- 0.11 / min 100 Bko Rate = 0.03 +- 0.01 / min \Rightarrow easy detection clear signal 50 0.1 0.2 0.3 0.4 θ^2

Usually more difficult

 θ^2 = (source position minus reconstructed arrival direction)^2

grey histogramm = OFF source black points = ON source

- weak source (few % crab)
- low energies $(\sim 80 \text{ GeV})$
 - \Rightarrow strong background, very difficult

Classical astronomy vs. VHE- γ -astronomy

Classical astronomy vs. VHE- γ -astronomy

Spectrum of a source

Example for a multi-wavelength study

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

high magnetic fields

hadronic CR amplify B-fields leptonic synchroton losses \rightarrow high energy γ 's hadronic

- SNR requierements
 - very young (pprox 1kyr)
- disadvantages
 - very few objects (\approx 15-50)
 - may lack target material

The perfect source(s)

To detect the hadronic channel look for purely hadronic sources

high magnetic fields

hadronic CR amplify B-fields leptonic synchroton losses \rightarrow high energy γ 's hadronic

- SNR requierements
 - very young (pprox 1kyr)
- disadvantages
 - very few objects (pprox15-50)
 - may lack target material

dense targets

molecular clouds leptons \rightarrow Bremsstrahlung hadrons π^0 -decay

- SNR requierements
 very close cloud
 ≈ pc
- disadvantages
 - few objects (\approx 200)
 - leptonic γ 's

The W51 complex

- One of the most luminous star forming regions (distance \sim 6kpc)
- W51C is a medium age (~ 30kyr) supernova remnant [SNR]
- The shell of the remnant interacts with the surrounding molecular clouds
- Discovered by *Fermi* / LAT (\sim GeV) and H.E.S.S. (4.4 σ , flux > 1 TeV)

Promising candiate to test and study cosmic ray acceleration in SNR's

Observations of W51C with MAGIC

- ▶ center of observations: Ra = 19.385 [h]
 ▶ Dec = 14.19 [deg]
- stereoscopic wobble data
- data from May to August 2010
- ► zenith angle 14-35 degree
- ▶ total of 31.09 h effective time

8 σ detection > 150 GeV
Extended emission region

Source position and extension > 150 GeV

- angular resolution 0.085 deg
- smearing kernel 0.1 deg
- contour levels from test statistics Starting at 3.5 ($\approx 3.5 \sigma$) in steps of 0.5

- Source position: Ra: $19.387 \pm 0.002 \text{ h}$ Dec: $14.18 \pm 0.02 \text{ deg}$
- Extension 0.16 ± 0.02 degree

MAGIC high energy γ -ray spectrum of W51C

- ▶ integration radius 0.26 deg
- ▶ from 75 up to 3300 GeV
- ▶ well fitted by power law χ^2 /d.o.f. = 4.51/5

▶ flux $\sim 3.8\%$ crab

hard index suggests only small propagation effects \rightarrow CR source spectrum

PRELIMINARY spectral energy distribution:

$$\frac{\mathrm{dF}}{\mathrm{dE}} = (1.25 \pm 0.18_{\mathrm{stat}}) \times 10^{-12} \left(\frac{\mathrm{E}}{\mathrm{TeV}}\right)^{(-2.40 \pm 0.12_{\mathrm{stat}})} \left[\mathrm{TeV}^{-1} \mathrm{cm}^{-2} \mathrm{s}^{-1}\right]$$

Revisiting models based on Fermi / LAT and radio

Pion decay dominated

- known cloud interaction
- agrees with radio

Bremsstrahlung dominated

- ▶ needs e/p ~ 1
- disagrees with radio

Inverse Compton dominated

- ▶ needs e/p ~ 1
- ▶ needs $n_{\rm H} < 0.1 {\rm cm}^{-3}$
- ▶ needs $W_e \sim 10^{51} erg$
- disagrees with radio

Spectral energy distribution in the γ -ray regime

VHE- γ -ray flux (> 800 GeV) harder than the model predictions

Possible explanations:

- particle spectrum hardens at high energies
- possible contribution from other sources at high energies

Relative flux map from 150 to 700 GeV

¹³CO J=1-0 emission

- $\blacktriangleright\,$ angular resolution $\sim 0.085 \deg$
- smearing kernel = 0.1 deg

Julian Krause (MPP)

Relative flux map > 700 GeV

¹³CO J=1-0 emission

21 cm continuum emission

- $\blacktriangleright\,$ angular resolution $\sim 0.054~{\rm deg}$
- ▶ smearing kernel = 0.065 deg

Julian Krause (MPP)

Now... ?!

Julian Krause (MPP)

Now... ?!

Summary

- CR origin is still an open issue
- VHE-γ-astronomy
 - new window
 - acceses highest energy particles
 - reached high sensitivity
 - \sim 100 sources known
- perfect sources to study GCR
 - knwon state/enviroment
 - multiwavelength approach

W51

- very likely hadronic
- need detailed modeling
- determine E_{max}^p

. . .