The anomalous magnetic moment of the muon
 A challenge for theory and experiment

Christian Sturm

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)
Föhringer Ring 6
80805 München

Content

Outline of the talk

I. Generalities

- Magnetic moments - definitions
- Anomalous magnetic moments of leptons a_{ℓ} - definitions
- Why a_{μ} ?
II. Experiment
- Basics for measuring a_{μ}
- The value
III. Theory
- Calculations to a_{ℓ} in QED, EW \& strong interaction
- Predictions from theory \& difference to exp.
- Anomalous magnetic moments of other leptons (electron, tau)
IV. Methods \& Calculations
- IBP, MI
- A bit of history - calculations are difficult...
- Own contribution
V. Summary \& Conclusion

Generalities

Magnetic moments $\vec{\mu}$
■ Magnetic moment of any system:
I.) Motion of el. charges

II.) Intrinsic mag. moments of elementary particles

- Classically:

$$
\vec{\mu}=\frac{q}{2 m} \vec{L} \stackrel{q=e}{=} \mu_{B} \vec{L}, \quad \text { Bohr magneton : } \mu_{B}=\frac{e}{2 m_{e}}
$$

- A magnetic moment in an external magnetic \vec{B} field has a potential energy U:

$$
U=-\vec{\mu} \vec{B}
$$

- Fundamental particles: intrinsic $\vec{\mu} \leftrightarrow$ Spin \vec{S} Dirac theory predicts for a lepton $\ell=e, \mu, \tau$:

$$
\overrightarrow{\mu_{\ell}}=g_{\ell}\left(\frac{q_{\ell}}{2 m_{\ell}}\right) \vec{S}, \quad g_{\ell}=2 \quad \text { (free, non-interacting) }
$$

g for classical orbital rotations would be 1

Generalities

Anomalous magnetic moment of leptons: a_{ℓ}
■ "Switch on" interactions:
QED, EW interactions, strong interactions
■ Quantum fluctuations: \rightsquigarrow deviation from $g_{\ell}=2$: parametrized by

$$
\begin{gathered}
g_{\ell}=2\left(1+a_{\ell}\right) \quad \rightsquigarrow \text { precise test of QFT } \\
\hookrightarrow \text { single number! }
\end{gathered}
$$

■ a_{ℓ} can be computed with high accuracy a_{μ} can be measured with high precision (in homogenous static mag. field, see later)

- More formally:

$$
=\bar{u}\left(p_{1}\right)\left[\gamma^{\mu} F_{E}\left(p^{2}\right)+i \frac{\sigma^{\mu \nu} p_{\nu}}{2 m_{\ell}} F_{M}\left(p^{2}\right)\right] u\left(p_{2}\right)
$$

■ In the static $\operatorname{limit}\left(p^{2} \rightarrow 0\right): \quad F_{E}(0)=1, \quad F_{M}(0)=a_{\ell}$

Generalities

a_{μ} and virtual particles in loops

■ Muon very interesting:
Quantum fluctuations due to heavier particles M :

$$
\delta a_{\ell} \propto m_{\ell}^{2} / M^{2} \quad\left(M \gg m_{\ell}\right)
$$

M heavy SM or BSM particle ratio: $m_{\mu} / m_{e} \sim 200, \quad m_{\tau} / m_{\mu} \sim 17$
\rightsquigarrow Sensitivity to physics beyond SM through virtual particles in loops
■ Loop calculations not only mathematical task to increase precisions of a given observable
\rightsquigarrow also allow to access energy regimes not yet reachable by collider experiments through virtual particles in the loops and open a window for new physics
■ Constraints on SM particles

Generalities

Example: Electroweak precision measurements
■ Exploited in electroweak precision measurements: Muon decay: precise measurement of lifetime at PSI

■ Determine weak coupling G_{F} at 0.6 ppm (muLan,FAST)

- Δr depends on SM parameters: M_{t}, M_{H}, \ldots
\Longrightarrow prediction of $M_{W}^{\text {theory }} \leftrightarrow M_{W}^{\text {experiment }}$
■ Constrain/predict top quark mass (before direct discovery)
- $\Delta \alpha$ running of the fine structure constant

■ Consistency constraints on the Higgs mass
\Rightarrow Guide line in which mass range to search for it

Experiment

Last experiment carried out at BNL:

LIFE OF A MUON:

THE g-2 EXPERIMENT

 see an electron, giving the muon spin direction.

After circling the ring many times, muons spontaneously decay to electron, (plus neutrinos,) in the direction of the muon spin. Quantum Fluctuations!
($\mathrm{g}-2$) Collaboration (H.N. Brown et al.)

$-\overrightarrow{\omega_{a}}=\overrightarrow{\omega_{s}}-\overrightarrow{\omega_{C}}=\frac{a_{\mu} e \vec{B}}{m_{\mu}}-\frac{e}{m_{\mu}}\left[a_{\mu}-\frac{1}{\gamma^{2}-1}\right] \vec{V} \times \vec{E}$ $\omega_{S}:$ spin precession frequency, $\omega_{C}:$ cyclotron frequency

- Experiment done with both polarities $\left(\mu^{+}, \mu^{-}\right)$
- positron time spectrum: $\quad N_{0}(E) e^{t / \gamma \tau}\left[1+A(E) \cos \left(\omega_{a} t+\phi(E)\right)\right]$
- Measure magnetic field, NMR

Experiment

Radius: 7.112 m , Muon "magic" momentum: 3.094 GeV , field: 1.45 T
lifetime at rest: $2.1970 \mu \mathrm{~s}$,
in the ring: $64.435 \mu s$

Experiment

The value

The present experimental value is terrifically accurate!:

$$
\begin{gathered}
\mathrm{a}_{\mu}^{\exp }=116592089(63) \cdot 10^{-11} \\
\text { wDG, E821: Final Report: PRD73 (2006) } \\
\text { with statistical error(54 } \cdot 10^{-11} \text {) and systematic error }\left(33 \cdot 10^{-11}\right) \\
\text { at the level of } \sim 0.5 \mathrm{ppm}
\end{gathered}
$$

- First measurement of a_{μ} was performed at Columbia 1960
- The result $a_{\mu}=0.00122(8)$ precision of about 5%
- No difference with a_{e}

History experiment:

\rightsquigarrow Improvement of a factor of 14 compared to the CERN experiment

Theory

Higher order corrections

- Higher order corrections are classified into 3 classes:

$$
a_{\mu}^{\mathrm{SM}}=a_{\mu}^{\mathrm{QED}}+a_{\mu}^{\mathrm{EW}}+a_{\mu}^{\mathrm{Had}}
$$

- The QED part is known to 4-loops (and leading terms in 5 loops!) (next slide)
- The EW part is known to 2-loops
R. Jackiw, S. Weinberg; G. Altarelli et al.; I. Bars, M. Yoshimura; A. Czarnecki et al.
- The hadronic part is known but with limited accuracy

Bouchiat,et al.;M. Gourdin,et al.;Brodsky, de Rafael;Hagiwara et al.;Alemany et al.;Davier et al.;Passera et al.
Dominant uncertainties to the theory prediction of muon anomaly
VP traditionally: measurements of cross section and hadronic τ decays(more later) Recently: non-pert. lattice calculation from first principles(ETMC)

Theory

Theory: QED contributions to a_{μ}
$a_{\mu}^{\text {QED }}=\left(\frac{\alpha}{\pi}\right) \underset{\text { Schwinger }}{0.5}$
$+\left(\frac{\alpha}{\pi}\right)^{2} \underset{\substack{\text { Sommerfield; Petermann; Suura \& } \\ 0.765857410(27)}}{0}$
$+\left(\frac{\alpha}{\pi}\right)^{3} \underset{\substack{\text { Barbieri, Laporta, Remiddi, ,.., Czarnecki, } \\ \text { Skrzypek; Friot, Greynat, de Rafael,.... }}}{24.05050964(43)}$
$+\left(\frac{\alpha}{\pi}\right)^{4} \underbrace{130.8055(80)}_{\underset{\text { Aoyama, Hayakawa; Lautrup, de Rafael,... }}{\text { Kinoshita, Lindquist, Nio, Nizic, Okamoto, }}}$
$+\left(\frac{\alpha}{\pi}\right)^{5} \underset{\text { Kinoshita et al.; Kataev; Laporta; Baikov et al. }}{663(20)}$ In progress

- Starting from 2-loop: universal(mass independent) vs. mass dependent contr.
- Result ≤ 3-loop analytical, ≥ 4-loop numerical (only one complete calculation)
- QED four-loop contributes as much as $380.8 \cdot 10^{-11}$
(compared to the exp. uncertainty of $\sim 60-70 \cdot 10^{-11}$)
\Longrightarrow five-loop contr. are relevant!
- Log enhancements: $\log \left(m_{\mu} / m_{e}\right)$ mass dependent contr. important for a_{μ} !

Theory

The LO hadronic contributions to a_{μ}

- Can not be computed perturbatively

$\Pi(s)$: vacuum polarization function
- Optical theorem:

$$
\begin{aligned}
2 \operatorname{lm}(& \left.\left.\int d \Pi\right|_{0} ^{a}\right|^{2} \\
12 \pi \operatorname{lm}\left[\Pi\left(q^{2}=s\right)\right] & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { Hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
\end{aligned}=R(s)
$$

■ $K(s) / s \sim 1 / s^{2}$ enhance low energy region of $R(s)$

- R-ratio: $R=N_{c} \sum_{i=u, d, s, . .} Q_{i}^{2}$

Theory

The LO hadronic contributions to a_{μ}, R-ratio
■ Measure $R(s)$: energy scan, radiative return (KLOE, BaBar)

■ Contributions to a_{μ} in \%

Jegerlehner et al.

γ hard

dominant contr. from below 1 GeV , dominant error from 1-2 GeV

- Above data: use continuum pert. theory

■ Alternatively: Get information from hadronic τ decays

Theory

The size of the individual contributions to a_{μ}
Orders of magnitude: ${ }^{1}$ (here: muon case)

$$
\begin{array}{cc}
a_{\mu}^{\mathrm{QED}}= & 116584718.09(0.15) \times 10^{-11} \\
a_{\mu}^{\mathrm{EW}}= & \left.154(1)(2) \times 10^{-11} \quad \text { (suppression } m_{\mu}^{2} / M_{w}^{2}\right) \\
& M_{h} \text { dependence small } \\
\text { QED dominant contribution }
\end{array}
$$

Hadronic contributions:

$$
\begin{aligned}
a_{\mu}^{\mathrm{Had}}= & a_{\mu}^{\mathrm{Had}}[\mathrm{~L}]+a_{\mu}^{\mathrm{Had}}[\mathrm{NLO}] \\
= & 6955(40)(7) \times 10^{-11} \\
& +7(26) \times 10^{-11}
\end{aligned}
$$

Compared to recent latt. result: $a_{\mu, n_{f}=2}^{\mathrm{Had}}[\mathrm{LO}]=5720(160) \times 10^{-11} \underset{\text { factor } \sim 3}{(\mathrm{ETMC})}$

NLO had:

opposite sign
\rightsquigarrow dominant error

theo.<exp.
${ }^{1}$ A. Höcker, W. Marciano, PDG 10

Theory vs. Experiment

The difference

- ${ }^{2}$ SM theory prediction:

$$
a_{\mu}^{\text {theo }}=116591834(2)(41)(26) \cdot 10^{-11}
$$

$\bullet \quad \Delta a_{\mu}=a_{\mu}^{\exp }-a_{\mu}^{\text {theo. }}=255(63)(49) \cdot 10^{-11}$
The current theory prediction shows an "interesting but not yet conclusive discrepancy" of $\sim 3.2 \sigma$
-Deviations with different determinations of hadronic contr.:

- $e^{+} e^{-}$, based method: 3.6σ Davier etal.10
- $e^{+} e^{-}$, based method: 3.3σ Hagiwara et al. '11
- $e^{+} e^{-}, \tau$ based method:4.1 σ Jegerlenner et al: 11
- Follow up experiment: proposed at Fermilab or JPARC, factor of 4 anticipated ($\delta \mathrm{a}_{\mu} \sim 15 \times 10^{-11}, 0.14 \mathrm{ppm}$)

[^0]\rightsquigarrow This reduction will lead to a more definitive result
■ >5 σ "discovery-level" deviation from the SM, if the central value remains unchanged
\rightsquigarrow enter new physics territory
■ January 13th, 2011, P. Oddone: "Following ... discussions with the Department of Energy on funding projections over the period when we could run the New g-2 Experiment, I grant Stage I approval to g-2"
■ Data taking could start 2015

- Main ingredient would still be muon storage ring from BNL

Theory vs. Experiment

$a_{\mu}^{\text {had }}$ and M_{H} Study by Passera, Marciano, Sirlin:

■ The difference could be due to contr. of new BSM physics
\square Can difference be explained with errors in $a_{\mu}^{\text {had }}$? \hookrightarrow Changes in σ have important consequences on M_{H} from EW precision measurements \hookrightarrow induces changes in $\Delta \alpha_{\text {had }}$, key input of EW fits

- Higgs boson mass:

EW precision measurements:
Shifts in σ in for $E \gtrsim 1.2 \mathrm{GeV}$
\hookrightarrow upper bound of M_{H} inconsistent with LEP lower limit
Shifts for lower E unlikely, given the small exp. uncertainties

■ Reduce $M_{H} \lesssim 130 \mathrm{GeV}$

\hookrightarrow leaves only narrow window for M_{H} in conjunction with 114.4 GeV

■ Any precise theoretical prediction requires a precise knowledge of the fundamental parameters
■ In QED these are: fine structure constant α + lepton masses m_{ℓ}
■ Most important basic parameter for calculating a_{μ} is: α
■ LO result is $\alpha /(2 \pi)+$ higher order QED corrections give dominant contribution
■ Very precise value for α can be determined using of a_{e}
■ Mass dependent contr. differ for a_{e}, a_{μ} and a_{τ}, such that $a_{e} \neq a_{\mu} \neq a_{\tau}$

Theory

Anomalous magnetic moment of the electron
■ Dominant contribution from universal diagrams
■ Mass dependent contr. are very small

■ Dominant error in prediction: uncertainty in α

contribution	a_{e} in units 10^{-6}
universal	$1159.65216856(929)(10)(31)$
μ-loops	$0.00000271(0)$
τ-loops	$0.00000001(0)$
hadronic	$0.00000168(2)$
weak	$0.000000039(0)$
theory	$1159.65217299(930)$
experiment	$1159.65218073(28)^{1}$

■ a_{e} at 0.24 ppb , more precise than a_{μ} by a factor of ≥ 2000
■ Thus experimental tests are able to check QED up to 7 digits
■ The sensitivity of the latter to "new physics" still about 19 times larger
■ ${ }^{1} 1 / \alpha=137.035999084(51)$ [0.37 ppb]
■ Dominant theory error: missing 5-loop QED Requires to evaluate the perturbation expansion up to 5 loops

[^1]
Theory

Anomalous magnetic moment of the τ-lepton

■ No real measurement exists yet for a_{τ}
■ Theory predicts: $a_{\tau}=117721(5) \times 10^{-8}$

- The experimental limit from the LEP experiments OPAL and L3 is

$$
-0.052<a_{\tau}<0.013 \text { at } 95 \% \mathrm{CL}
$$

■ For a_{τ} one would have by far the best sensitivity if one could measure it with comparable precision
■ ...is beyond present experimental possibilities, because of very short lifetime of the τ

Back to theory of a_{μ}

calculations, some diagrams 1- to 3-loop...

QED gives dominant contribution

1-loop: 1 diagram (schwinger), 2-loop: 7(9) diagrams, Each Feynman diagrams 3-loop: 72+ diagrams, leads to many loop integrals 4-loop: 891+ diagrams

Theory

...calculations, even more diagrams...(currently in progress, frontier)

- 12672 diagrams
- 6 classes (I-VI), 32 gauge invariant subsets
- (For simplicity external photon omitted)

- Kinoshita et al.
- : Baikov, Chetyrkin, C.S.
\#: Laporta
*: Aguilar, de Rafael, Greynat
X: still unkown (only 3 out of 32 subsets!)
- : numerical; •, \#, *: (semi) analytical

Methods

...sigh, lots of integrals to solve....
Example: First 10 gauge invariant 5-loop subsets with e:~ 15000 Integration-by-parts (IBP):

K.G. Chetyrkin, F.V. Tkachov

$$
0=\int\left[d^{D} \ell_{1}\right] \ldots\left[d^{D} \ell_{4}\right] \quad \partial_{\left(\ell_{j}\right)_{\mu}}\left(\ell_{l}^{\mu} I_{\alpha \beta}\right), \quad j, l=1, \ldots, \text { loops }
$$

$I_{\alpha \beta}$: Generic integrand with propagator powers $\alpha=\left\{\alpha_{1}, \ldots\right\}$ and scalar-product powers $\beta=\left\{\beta_{1}, \ldots\right\}$
Laporta-Algorithm: originally developed for g-2
Idea: \quad - IBP-identities for explicit numerical values of α, β

- Introduction of an order among the integrals
- Solving a linear system of equations

Automation: \rightarrow Computer algebra
Reducible: Diagrams which can be mapped on diagrams with less lines, others masters
Problem: Dramatic growth of number of equations
Here: $\quad>100000$ IBP-identities generated and solved
\rightsquigarrow Large integral-tables with solutions for several thousand integrals, expressed in terms of few masters(MI)

an example for integration-by-parts:

$$
2)=\int d \ell_{1} \int d \ell_{2} \frac{1}{\left(\ell_{1}^{2}+m^{2}\right)\left(\ell_{2}^{2}+m^{2}\right)\left(\ell_{1}+\ell_{2}\right)^{2}}=\int d \ell_{1} \int d \ell_{2} \frac{1}{D_{1}^{1} D_{2}^{1} D_{3}^{\top}}=f(1,1,1)
$$

IBP-identities:

$$
\begin{aligned}
& \text { I) } 0=\int d \ell_{1} \int d \ell_{2} \partial \ell_{1} \ell_{2} \frac{1}{D_{1} D_{2} D_{3}} \text { II) } 0=\int d \ell_{1} \int d \ell_{2} \partial \ell_{1} \ell_{1} \frac{1}{D_{1} D_{2} D_{3}} \\
& 0=f(1,1,1)-f(2,1,0) \\
& -2 m^{2} f(2,1,1)-f(1,1,1) \\
& 0=d f(1,1,1) \\
& -2 f(1,1,1)+2 m^{2} f(2,1,1) \\
& -f(1,1,1) \\
& \Rightarrow f(2,1,1)=-\frac{1}{2 m^{2}} f(2,1,0) \\
& \Rightarrow f(1,1,1)=\frac{1}{d-3} f(2,1,0) \\
& \text { - } \xi=\frac{-1}{2 m^{2}} \propto \infty \\
& \text { 看 }=\frac{1}{d-3} 8
\end{aligned}
$$

Laporta, Remiddi a_{ℓ} : 3-loop: $18 \mathrm{MI}, 4$-loop: $\sim 300 \mathrm{MI}$

an example for integration-by-parts:

$$
2=\int d \ell_{1} \int d \ell_{2} \frac{1}{\left(\ell_{1}^{2}+m^{2}\right)\left(\ell_{2}^{2}+m^{2}\right)\left(\ell_{1}+\ell_{2}\right)^{2}}=\int d \ell_{1} \int d \ell_{2} \frac{1}{D_{1}^{1} D_{2}^{1} D_{3}^{\top}}=f(1,1,1)
$$

IBP-identities:

$$
\begin{aligned}
& \text { I) } 0=\int d \ell_{1} \int d \ell_{2} \partial_{\ell_{1} \ell_{2}} \frac{1}{D_{1} D_{2} D_{3}} \\
& \begin{aligned}
0 & =f(1,1,1)-f(2,1,0) \\
& -2 m^{2} f(2,1,1)-f(1,1,1)
\end{aligned} \\
& \begin{aligned}
0 & =f(1,1,1)-f(2,1,0) \\
& -2 m^{2} f(2,1,1)-f(1,1,1)
\end{aligned} \\
& \text { II) } 0=\int d \ell_{1} \int d \ell_{2} \partial_{\ell_{1}} \ell_{1} \frac{1}{D_{1} D_{2} D_{3}} \\
& 0=d f(1,1,1) \\
& -2 f(1,1,1)+2 m^{2} f(2,1,1) \\
& -f(1,1,1) \\
& \Rightarrow f(2,1,1)=-\frac{1}{2 m^{2}} f(2,1,0) \\
& \Rightarrow f(1,1,1)=\frac{1}{d-3} f(2,1,0) \\
& \text { - }=\frac{-1}{2 m^{2}} \bullet \infty=\frac{d-2}{4 m^{4}} 8 \\
& =\frac{1}{d-3} \quad=\frac{(2-d)}{(d-3) 2 m^{2}} \gamma
\end{aligned}
$$

Laporta, Remiddi a_{ℓ} : 3-loop: $18 \mathrm{MI}, 4$-loop: $\sim 300 \mathrm{MI}$

Some historical examples at 4-loop

- Analytical and numerical results help each other in mutually testing current and future calculations
- Using results from ${ }^{3}$ r. Faustov etal. ${ }^{91}$ found the contribution to:

$$
a_{\mu}=\left(\frac{\alpha}{\pi}\right)^{4}\left[0.92374+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right]
$$

is in disagreement to the numerical result by т. Kinoshita, в. Nizic, Y. Okamoto
'91

$$
a_{\mu}=\left(\frac{\alpha}{\pi}\right)^{4} 1.4416(18)
$$

- Problem came from theoretical error in ${ }^{3}$; after correction
т. Kinoshita, н. Kawai, ५. okamoto the new result was in good agreement:

$$
a_{\mu}=\left(\frac{\alpha}{\pi}\right)^{4}\left[1.452570+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right]
$$

[^2]
An other historical example at 4-loop

- Quenched approximation of the photon propagator

■ Asymptotic result Broadhurst, Kataev, Tarasov '94 was in disagreement to the numerical result by $\mathrm{\tau}$. Kinoshita, B. Nizic, Y. okamoto '90

$$
\begin{aligned}
a_{\mu}^{\text {asymp. }} & =\left(\frac{\alpha}{\pi}\right)^{4}\left(-0.29087+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)\right) \\
a_{\mu}^{\text {num. }} & =\left(\frac{\alpha}{\pi}\right)^{4}(-0.7945(202))
\end{aligned}
$$

■ After recalculation with improved integration routine (VEGAS instead of RIWIAD + much better statistics) result changed to т. Kinoshita '9з

$$
a_{\mu}^{n u m .}=\left(\frac{\alpha}{\pi}\right)^{4}(-0.2415(19))
$$

Calculation

...do the same comparison at 5-loops, logarithmically enhanced contributions

There are 2 sources of numerically leading enhanced logs of large ratio $\frac{M_{\mu}}{m_{e}}=206.7682838$ pure QED contributions:

\rightarrow We will consider mixed VP contributions: photon propagator composed from electron loops and photon exchanges only!

$$
a_{\mu}=\frac{\alpha}{\pi} \int_{0}^{1} d x(1-x)\left[d_{R}\left(\frac{-x^{2}}{1-x} \frac{M_{\mu}}{m_{e}}, \alpha\right)-1\right] \text { B. Lautrup, de Rafael '74 }
$$

with $d_{R}\left(q^{2} / m^{2}, \alpha\right)=1 /\left(1+\alpha \Pi^{\text {os }}\left(q^{2} / m_{e}^{2}, \alpha^{\text {os }}\right)\right)$
$\Pi^{\text {os }}$ proper photon VP in OS-scheme

Calculation

Vacuum polarization function

Required ingredients for the calculation:

■ Vacuum polarization function

- High-energy limit \rightarrow massless propagators

The value of $\bar{\Pi}\left(Q^{2}, m=0, \bar{\alpha}\right)$ is known at 4-loops with Baicer (P. Baikov, 2000-2008) in MS-scheme
P.A. Baikov, K.G. Chetyrkin, J.H. Kühn

Traditionally in calculations of a_{ℓ} everybody uses the classical OS-scheme: $\quad \alpha$ and all lepton masses are on-shell and:

$$
\Pi^{\mathrm{OS}}\left(Q=0, m, \alpha^{\mathrm{OS}}\right)=0
$$

\rightsquigarrow Transform massless propagator from $\overline{\mathrm{MS}} \rightarrow$ on-shell scheme
■ Need: $\overline{\mathrm{MS}} \leftrightarrow$ On-shell relation at 4-loop for fine structure constant conversion: $\bar{\alpha} \rightarrow \alpha^{\text {os }}$

Result

$\overline{\mathrm{MS}}$-OS-relation for conversion of fine structure constant

$$
\bar{\alpha}=\alpha^{\mathrm{OS}}\left(1+\sum_{i \geq 1} C_{\bar{\alpha} \alpha}^{(i)}\left(\frac{\alpha^{\mathrm{OS}}}{\pi}\right)^{i}\right)
$$

$$
\begin{aligned}
C_{\bar{\alpha} \alpha}^{(4)}= & \frac{14327767}{9331200}+\frac{8791}{3240} \pi^{2}+\frac{204631}{259200} \pi^{4}-\frac{175949}{4800} \zeta_{3}+\frac{1}{24} \pi^{2} \zeta_{3}+\frac{9887}{480} \zeta_{5}-\frac{595}{108} \pi^{2} \ln 2 \\
- & \frac{106}{675} \pi^{4} \ln 2+\frac{6121}{2160} \pi^{2} \ln ^{2} 2-\frac{32}{135} \pi^{2} \ln ^{3} 2-\frac{6121}{2160} \ln ^{4} 2+\frac{32}{225} \ln ^{5} 2-\frac{6121}{90} a_{4}-\frac{256}{15} a_{5} \\
& +\ell_{\mu m}\left[-\frac{383}{31104}+\frac{23}{108} \pi^{2}-\frac{41}{144} \zeta_{3}-\frac{2}{9} \pi^{2} \ln 2\right]+\frac{43}{144} \ell_{\mu m}^{2}+\frac{13}{108} \ell_{\mu m}^{3}+\frac{1}{81} \ell_{\mu m}^{4}, \\
& \ell_{\mu m}=\ln \frac{\mu}{m}, \quad a_{n}=\operatorname{Lin}_{n}\left(\frac{1}{2}\right) \text { Baikov, Chetyrkin, C.S. }
\end{aligned}
$$

Important: $\Pi\left(q^{2} / m^{2}, \alpha\right)=\Pi^{\infty}\left(q^{2} / m^{2}, \alpha\right)+\mathcal{O}\left(m^{2} / q^{2}\right)$
then the resulting error in a_{μ} will be:

$$
a_{\mu}=\frac{\alpha}{\pi} \int_{0}^{1} d x(1-x)\left[d_{R}^{\infty}\left(\frac{-x^{2}}{1-x} \frac{M_{\mu}}{m_{e}}, \alpha\right)-1\right]+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right)
$$

of order m_{e} / M_{μ} with $d_{R}^{\infty}=1 /\left(1+\alpha \Pi^{\infty}\right)$

Result

Analytical 5-loop contributions to a_{μ}
The resulting contributions to a_{μ} coming from 4-loop terms in the photon propagator read :

$$
\begin{aligned}
& a_{\mu}^{\text {asymp. }}=\sum_{i \geq 2} a_{\mu}^{\text {asymp.,(i) }}\left(\frac{\alpha}{\pi}\right)^{i} \\
& a_{\mu}^{\text {asymp.,(5) }}=-\frac{296496193}{41990400}+\frac{45709}{58320} \pi^{2}+\frac{212701}{518400} \pi^{4}-\frac{4488523}{259200} \zeta_{3}+\frac{35}{144} \pi^{2} \zeta_{3}+\frac{4}{3} \zeta_{3}^{2}+\frac{10909}{720} \zeta_{5} \\
& \quad+\quad \frac{35}{8} \zeta_{7}-\frac{55}{24} \pi^{2} \ln 2-\frac{53}{675} \pi^{4} \ln 2+\frac{6121}{4320} \pi^{2} \ln ^{2} 2-\frac{16}{135} \pi^{2} \ln ^{3} 2-\frac{6121}{4320} \ln ^{4} 2 \\
& \quad+\quad \frac{16}{225} \ln ^{5} 2-\frac{6121}{180} a_{4}-\frac{128}{15} a_{5}+\ell_{\mu e}\left[\frac{1416095}{279936}+\frac{41}{972} \pi^{2}-\frac{1855}{432} \zeta_{3}-\frac{10}{3} \zeta_{5}-\frac{2}{9} \pi^{2} \ln 2\right] \\
& \quad+\quad \ell_{\mu e}^{2}\left[-\frac{1507}{1944}+\frac{8}{81} \pi^{2}+\frac{4}{3} \zeta_{3}\right]-\frac{83}{243} \ell_{\mu e}^{3}+\frac{8}{81} \ell_{\mu e}^{4}+\mathcal{O}\left(\frac{m_{e}}{M_{\mu}}\right), \quad \ell_{\mu e}=\ln \frac{M_{\mu}}{m_{e}}, \quad a_{n}=\mathrm{Li}_{n}\left(\frac{1}{2}\right)
\end{aligned}
$$

Baikov, Chetyrkin, C.S.
\Longrightarrow Logarithmically enhanced terms: $\ell_{\mu e}$
Numerically: $\left(\frac{\alpha}{\pi}\right)^{5} a_{\mu}^{\text {asymp.,(5) }}=\left(\frac{\alpha}{\pi}\right)^{5} 62.2667=0.42105 \cdot 10^{-11}$ (compared to $\left(\frac{\alpha}{\pi}\right)^{5} 663(20)$, about $\sim 10 \%$)
log vs. non-log terms: $87 \% \longleftrightarrow 13 \%$

Comparison

Numerical results \longleftrightarrow Analytical results Baikov, Chetyrkin, c.s.

Subset	analytical	numerical	$\delta(a-n)$
$I(j)$	$-1.21429+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$-1.24726(12)$	+0.033
$I(i)$	$+0.25237+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+0.0871(59)$	+0.165
$I(g)+I(h)$	$+1.50112+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+1.56070(64)$	-0.060
$I(f)$	$+2.89019+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+2.88598(9)$	+0.004
$I(c)$	$+4.81759+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+4.74212(14)$	+0.075
$I(d)$	$+7.44918+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+7.45270(88)$	-0.004
$I(e)$	$-1.33141+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$-1.20841(70)$	-0.123
$I(b)$	$+27.7188+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+27.69038(30)$	+0.028
$I(a)$	$+20.1832+\mathcal{O}\left(\frac{m_{e}}{m_{\mu}}\right)$	$+20.14293(23)$	+0.040

-Numerics from: T. Kinoshita, M. Nio (06); T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, N. Watanabe (08); T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio $(07,08,10)$ -Agreement with Kataev, where available
-Remaining differences should come from power suppressed corrections to the asymptotic result of $\mathcal{O}\left(m_{e} / M_{\mu}\right)$

Summary \& Conclusion

- a_{μ} has already been measured with impressive precision 0.5 ppm
■ Dominant contribution to theory prediction comes from pure QED
- Dominant theory error arises from hadronic contributions

■ Currently a discrepancy of $>3 \sigma$ between theory and experiment

- Discrepancy not yet understood, sign of new physics?

■ Future experiment will give a more definite answer

- To conclude: After more than ~ 50 years, the anomalous magnetic moment of the muon is still a challenge for experiment and theory

[^0]: ${ }^{2}$ A. Höcker, W. Marciano, PDG 10

[^1]: ${ }^{1}$ D. Hanneke, S. Fogwell, G. Gabrielse

[^2]: ${ }^{3}$ J. Calmet, E. de Rafael '75

