

Radiation Hardness of DEPFET Detectors

IMPRS Young Scientist Workshop 2011

Wildbad Kreuth, 25th-29th July 2011

halbleiterlabor

Andreas Ritter

- 1. Motivation: DEPFETs for Belle 2
- 2. What is a DEPFET?
- 3. Ionizing radiation on MOS devices
- 4. Possible pixel layout \rightarrow voltage cross sections
- 5. Threshold voltage shift dependance on gate voltage
- 6. Summary and Outlook

It's not about this detector...

... but about this one (Belle 2)

Motivation: DEPFETs for Belle 2

DEPFETs for Belle 2

> DEPFETs have a good SNR \rightarrow thin sensors achievable (75 µm, avoids multiple scattering)

➢ Charge collection (next slides...)
possible in "OFF"-state → low power dissipation → cooling via end flanges and airflow

➢ Bulk damage: ~10¹¹ neq/(cm² * yr)
 =type inversion
 =chargeloss (trapping)
 ■leakage current, shot noise → fast readout (20µs frame time)

Motivation: DEPFETs for Belle 2

DEPFET WORKING PRINCIPLE

29th July 2011

IMPRS Young Scientist Workshop 2011

Working principle of a DEPFET

What is a **DEPFET?**

Working principle of a DEPFET

What is a **DEPFET?**

-It's a MOSFET!

29th July 2011

1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>

- 1. DEPFET = <u>Depleted Field Effect Transistor</u>
- 2. Consider a normal MOSFET...

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET... ...now add some DEPFET specifics.

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET... ...now add some DEPFET specifics.

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. DEPFET = <u>Dep</u>leted <u>Field Effect Transistor</u>
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- 4. Charge creation and collecting

- 1. **DEPFET = Depleted Field Effect Transistor**
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- Charge creation and collecting 4.
- Clear mechanism 5.

- 1. **DEPFET = Depleted Field Effect Transistor**
- 2. Consider a normal MOSFET...
- 3. Sidewards depletion
- Charge creation and collecting 4.
- Clear mechanism 5.

Working principle of a DEPFET

IONIZING RADIATION AND SIO₂

IMPRS Young Scientist Workshop 2011

Two types of damage:

1. Trapped oxide charges

 → Changes MOSFET operating point

 2. Interface traps

 → Creates 1/f noise
 → not covered in this talk

Defects – Creation of Oxide Charge (I)

Defects – Creation of Oxide Charge (I)

SiO₂ Crystal structure Interface between Si and SiO₂: "Lattice" mismatch

SiO₂ Crystal structure Interface between Si and SiO₂: *"Lattice"* mismatch \rightarrow Bond from Si to Si Oxygen Vacancy

SiO₂ Crystal structure
Interface between Si and
SiO₂: "Lattice" mismatch
→ Bond from Si to Si
Strained Bond can be
broken by holes in the
oxide (coming from
ionizing radiation)

Defects – Creation of Oxide Charge (I)

SiO₂ Crystal structure Interface between Si and SiO₂: "Lattice" mismatch → Bond from Si to Si Strained Bond can be broken by holes in the oxide (coming from ionizing radiation)

Positive charge remains...

Oxide charges are trapped holes in the oxide Change threshold voltage and may create parasitic channels

PIXEL LAYOUT AND VOLTAGE DEPENDANCIES

Motivation - Possible Pixel Layout

29th July 2011

Motivation (II)- Possible Pixel Layout

Motivation (III)- Possible Pixel Layout and Potentials

Motivation (IV)- Possible Pixel Layout and relevant cross sections **ΔV ≈ +2**.5 V $\Delta V \approx +5 V$ Drift region -8 V Drain Clear Gate - 2.5 V -5 V Drain Source Source Clear Gate +4 V 0 V Drain Drain ΔV ≈ -2.5 V $\Delta V \approx -5 V$

Motivation (IV)- Possible Pixel Layout and relevant cross

sections

Change in threshold voltage shift due to certain Gate voltages

Characteristics of thin oxide structures:

- thin and thick Si₃N₄
- ${}^{\bullet}\text{SiO}_2$ thickness is the same for all
- •Central device: Gate Controlled Diode
- •14 Transistor (=2x7), with diff. Gate length and width
- •Doping profiles similar to Clear Gate

Thicker nitride could be a solution to the problem at hand.

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Thicker nitride could be a solution to the problem at hand.

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Clear Gate Results, -5 V during Irradiation

Clear Gate Results, **0 V** during Irradiation

Clear Gate Results, +2.5 V during Irradiation

Clear Gate Results, +5 V during Irradiation

Change in threshold voltage shift due to certain Gate voltages (thick nitride)

Change in threshold voltage shift due to certain Gate voltages (thin nitride)

<u>Summary</u>

- DEPFET is a MOSFET
- > Ionizing radiation damages gate oxides \rightarrow trapped positive charge
- > Trapped oxide charge alters operating point
- > Intra pixel variations \rightarrow no good!

<u>Outlook</u>

 Additional radiation campaigns with diff. nitride layer thickness will be conducted

Thank you

Influence of ionizing radiation

Surface defects – Defects in silicon dioxide

- 1. Trapped oxide charge
 - a) e⁻/h⁺ pairs created
 - b) Electrons have high mobility, swept out of the oxide, holes get trapped
 - i. E' center \rightarrow change in V_{threshold}
- 2. Dangling bonds
 - a) Hydrogen is used to saturate open bindings (dangling bonds) during production
 - b) Ionizing radiation frees protons
 - c) Protons travel to defects (near Si-SiO₂ interface)
 - d) Creation of H_2 and dangling bonds
 - Increase in noise(1/f), and subthreshold swing S. Decrease in transconductance g_m

At the Interface between Si and SiO₂...

Lattice constants of Si and SiO₂ do not match open bindings highly electrically active

Use Hydrogen (Forming Gas) to get rid of Interface Traps Passivation

Ionizing radiation creates/frees protons somewhere in the device. Via diffusion and drift Hydrogen nuclei get to the interface. $H^+ + Si-H \rightarrow Si^+ + H_2$

At the Interface between Si and SiO₂...

The most common interface trap is called Pb.

Interface trap is amphoteric = act as Donor or as Acceptor.

In lower Half Band Gap mostly acceptor type, in the upper half donor-type.

Noise after Irradiation

- Gate region exhibits a more homogeneous voltage region than the clear gate (very thick oxide in between)
 - \rightarrow common shift adjustable
- Problem: inhomogeneous irradiation along z in the detector
 - → Solution: segmentation of module
- Irradiations with diff. Nitride thicknesses show good results for thinnest layer.

Trapping in insulator layer

Radiation-Induced Trapped Charge in Metal-Nitride-Oxide-Semiconductor Structure; Takahashi et. al. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999 $+V_{G}$

- 1. Holes in oxide to Si-SiO₂ interface
- 2. Holes in Si_3N_4 and electrons from SiO_2 to N-O interface
- 3. Recombination rate in Si_3N_4 lower than in SiO_2 (+trap density precursors)

 \rightarrow more e trapped at N-O

4. Build-up of e^{-1} reduces field in oxide \rightarrow saturation

-V_G Field always present

Thick Si₃N₄

→ Reduces field in ox (capacitance voltage divider) → saturation

29th July 2011

Threshold voltage shifts due to Gate voltages

Threshold voltage shifts due to Gate voltages

