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It‘s not about this detector…
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… but about this one (Belle 2)
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Motivation: DEPFETs for Belle 2

DEPFETs for Belle 2

DEPFETs have a good SNR  thin 
sensors achievable (75 µm, avoids 
multiple scattering)

Charge collection (next slides…) 
possible in „OFF“-state  low power 
dissipation  cooling via end flanges 
and airflow

Bulk damage: ~1011 neq/(cm² * yr)
type inversion
chargeloss (trapping)
leakage current, shot noise  fast 
readout (20µs frame time)
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Motivation: DEPFETs for Belle 2

DEPFETs for Belle 2

PXD (DEPFET matrix) suffers from 
ionizing radiation, estimated 1…2 
Mrad/yr (10…20 kGy/yr)
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DEPFET WORKING PRINCIPLE
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Working principle of a DEPFET

What is a DEPFET?
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Working principle of a DEPFET

What is a DEPFET?

-It‘s a MOSFET!
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…

p-channel
p+
n-bulk
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…

…now add some DEPFET specifics.

Backside

n+ (Int. Gate)
p+ backside

Internal Gate
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…

…now add some DEPFET specifics.

Backside

n+ (Int. Gate)
p+ backside
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion – Equipotential planes

Internal Gate

Backside

Performed by
K. Gärtner
WIAS Berlin
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting

higher current via 
mirror charges
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting

higher current via 
mirror charges
 ISig = I2 – I1
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting
5. Clear mechanism

Picture from side (90°rotated)

„normal“ MOSFET
Clear (n+)
Clear Gate
p+ isolation

channel
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting
5. Clear mechanism

Picture from side (90°rotated)

„normal“ FET
Clear (n+)
Clear Gate
p+ isolation

channel
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Working principle of a DEPFET

1. DEPFET = Depleted Field Effect Transistor
2. Consider a normal MOSFET…
3. Sidewards depletion
4. Charge creation and collecting
5. Clear mechanism
6. DEPFET structure
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IONIZING RADIATION AND SIO2
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Ionizing radiation damage

Two types of damage:

1. Trapped oxide charges
 Changes MOSFET operating point

2. Interface traps
 Creates 1/f noise

 not covered in this talk
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Defects – Creation of Oxide Charge (I)

SiO2 Crystal structure
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Defects – Creation of Oxide Charge (I)

SiO2 Crystal structure

Interface between Si and 

SiO2: “Lattice” mismatch
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Defects – Creation of Oxide Charge (I)

SiO2 Crystal structure

Interface between Si and 

SiO2: “Lattice” mismatch 

 Bond from Si to Si
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Defects – Creation of Oxide Charge (I)

SiO2 Crystal structure

Interface between Si and 

SiO2: “Lattice” mismatch 

 Bond from Si to Si

Strained Bond can be 

broken by holes in the 

oxide (coming from 

ionizing radiation)
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Defects – Creation of Oxide Charge (I)

SiO2 Crystal structure

Interface between Si and 

SiO2: “Lattice” mismatch 

 Bond from Si to Si

Strained Bond can be 

broken by holes in the 

oxide (coming from 

ionizing radiation)

Positive charge remains…
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Impact of Oxide Charge on the DEPFET

29th July 2011 IMPRS Young Scientist Workshop 2011

Oxide charges are trapped holes in the oxide

Change threshold voltage and may create 

parasitic channels



PIXEL LAYOUT AND VOLTAGE

DEPENDANCIES
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Motivation - Possible Pixel Layout

Clear Gate
Clear

p+ (Source and Drain)

Surrounding drift region
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Motivation (II)- Possible Pixel Layout

Clear Gate
Clear

p+ (Source and Drain)

Surrounding drift region

Gate
(not so critical)

IMPRS Young Scientist Workshop 201129th July 2011



Motivation (III)- Possible Pixel Layout and Potentials
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Motivation (IV)- Possible Pixel Layout and relevant cross 

sections

∆V ≈ -2.5 V

∆V ≈ +5 V ∆V ≈ +2.5 V

∆V ≈ -5 V
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Motivation (IV)- Possible Pixel Layout and relevant cross 

sections

∆V ≈ -2.5 V

∆V ≈ +5 V ∆V ≈ +2.5 V

∆V ≈ -5 V
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Change in threshold voltage shift due to certain Gate voltages

Only one Clear 
Gate volatge
avialable
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Change in threshold voltage shift due to certain Gate voltages

Ma/Dressendorfer

Only one Clear 
Gate volatge
avialable flat
region is
favoured
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Layout of thin oxide devices

Characteristics of thin 
oxide structures:

• thin and thick Si3N4

•SiO2 thickness is the 
same for all

•Central device: Gate 
Controlled Diode

•14 Transistor (=2x7), 
with diff. Gate length 
and width

•Doping profiles similar 
to Clear Gate
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Thick nitride and Gate voltages

Radiation-Induced Trapped Charge in
Metal-Nitride-Oxide-Semiconductor Structure;  Takahashi et. al.
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Thicker nitride 
could be a 
solution to the 
problem at 
hand.
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Thick nitride and Gate voltages

Radiation-Induced Trapped Charge in
Metal-Nitride-Oxide-Semiconductor Structure;  Takahashi et. al.
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 46, NO 6, DECEMBER 1999

Thicker nitride 
could be a 
solution to the 
problem at 
hand.
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Clear Gate Results, -5 V during Irradiation

~4.7 V
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Clear Gate Results, 0 V during Irradiation

~3.4 V
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Clear Gate Results, +2.5 V during Irradiation

~4.7 V

IMPRS Young Scientist Workshop 201129th July 2011



Clear Gate Results, +5 V during Irradiation

~9.4 V
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Change in threshold voltage shift due to certain Gate voltages 

(thick nitride)

0

1

2

3

4

5

6

7

8

9

10

-6 -4 -2 0 2 4 6

T
h

re
sh

o
ld

 v
o

lt
a

ge
 s

h
if

t 
a

t 
ce

rt
a

in
 d

o
se

 v
a

lu
e

s 
(V

)

Voltage during Irradiation (V)

Treshold voltage shifts due to Gate voltages

220 krad

550 krad

1500 krad

3000 krad

5000 krad

Irrad
iatio

n

IMPRS Young Scientist Workshop 201129th July 2011



0

2

4

6

8

10

12

14

16

-6 -4 -2 0 2 4 6

Th
re

sh
o

ld
 v

o
lt

ag
e

 s
h

if
t 

at
 c

e
rt

ai
n

 d
o

se
 v

al
u

e
s 

(V
)

Voltage during Irradiation (V)

220

550

1500

3000

Change in threshold voltage shift due to certain Gate voltages 

(thin nitride)

Irrad
iatio

n

IMPRS Young Scientist Workshop 201129th July 2011



Summary and Outlook

Summary

 DEPFET is a MOSFET

 Ionizing radiation damages gate oxides trapped positive charge

 Trapped oxide charge alters operating point

 Intra pixel variations no good!

Outlook

 Additional radiation campaigns with diff. nitride layer thickness will be 

conducted

Thank you
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Backup
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Influence of ionizing radiation

Surface defects – Defects in silicon dioxide

1. Trapped oxide charge
a) e-/h+ pairs created
b) Electrons have high mobility, swept out of 

the oxide, holes get trapped
i. E‘ center  change in Vthreshold

2. Dangling bonds
a) Hydrogen is used to saturate open bindings 

(dangling bonds) during production
b) Ionizing radiation frees protons
c) Protons travel to defects (near Si-SiO2

interface)
d) Creation of H2 and dangling bonds

i. Increase in noise(1/f), and subthreshold
swing S. Decrease in transconductance
gm
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At the Interface between Si and SiO2…

Lattice constants of Si and SiO2 do not match

open bindings

highly electrically active
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At the Interface between Si and SiO2…

Use Hydrogen 
(Forming Gas) to get rid 
of Interface Traps

Passivation

57



At the Interface between Si and 
SiO2…

Ionizing radiation 
creates/frees protons 
somewhere in the device.
Via diffusion and drift 
Hydrogen nuclei get to the 
interface.
H+ + Si-H  Si+ + H2
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At the Interface between Si and 
SiO2…

The most common interface 
trap is called Pb.

Hot-electron induced passivation of silicon dangling 
bonds
at the Si(111)/SiO2 interface
E. Cartier and J. H. Stathis from
Appl. Phys. Lett., Vol. 69, No. 1, 1 July 1996

Interface trap is amphoteric
= act as Donor or as 
Acceptor.

In lower Half Band Gap 
mostly acceptor type, in the 
upper half donor-type.
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Noise after Irradiation

4.6 e- ENC after 8 
Mrad (55Fe), PXD5

SNR=27 @ 109Cd 
(22keV)

S. Rummel
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Ionizing radiation in gate region

Clear Gate
Clear

p+ (Source and Drain)

Surrounding drift region

Gate

 Gate region exhibits a more 

homogeneous  voltage region 

than the clear gate (very thick 

oxide in between)

 common shift adjustable

 Problem: inhomogeneous 

irradiation along z in the 

detector 

 Solution: segmentation 

of module

 Irradiations with diff. Nitride 

thicknesses show good results 

for thinnest layer.
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Trapping in insulator layer

+VG
1. Holes in oxide to Si-SiO2

interface
2. Holes in Si3N4 and electrons 

from SiO2 to N-O interface
3. Recombination rate in Si3N4

lower than in SiO2 (+trap density 
precursors)
more e- trapped at N-O

4. Build-up of e- reduces field in 
oxide  saturation 

-VG
Field always present

Thick Si3N4
 Reduces field in ox (capacitance 

voltage divider)  saturation

Radiation-Induced Trapped Charge in
Metal-Nitride-Oxide-Semiconductor Structure;  
Takahashi et. al.
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL 
46, NO 6, DECEMBER 1999
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Threshold voltage shifts due to Gate voltages
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Maybe new pixel design neglects this shift
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