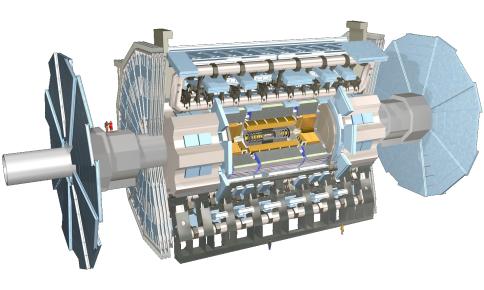
The Belle II Experiment

Martin Ritter

Young Scientist Workshop Wildbad Kreuth
July 27, 2011

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)



Motivation Belle II Experiment Particle ID Tracking System Vertex Detector Conclusions

The ATLAS Detector

Motivation

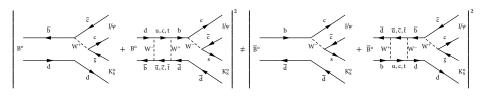
Motivation

There are many ways to look for new physics

- One is to crank up the energies and search for NP directly at high energies
- Another is to do precision measurements of the SM at lower energies

B-physics is a branch of High Energy physics were we study mainly the properties of B mesons:

- although energy is low, NP can enter through loops
- measure CP violation
- measure branching fractions of rare decays $(B \to \ell^+ \ell^-)$
- search for $\tau \to \mu \gamma$, $\mu \mu \mu$, $\mu \eta$
- find new states near the B meson production threshold


Measurement of CP Violation

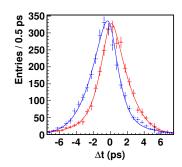
Objective: Measure time dependent decay asymmetry of B and \overline{B} going to the same final state

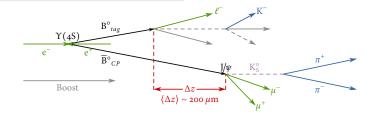
$$a_{CP} (t) = \frac{\Gamma \left(\overline{\mathbf{B}}^{\circ} \rightarrow f_{CP}; t \right) - \Gamma \left(\mathbf{B}^{\circ} \rightarrow f_{CP}; t \right)}{\Gamma \left(\overline{\mathbf{B}}^{\circ} \rightarrow f_{CP}; t \right) + \Gamma \left(\mathbf{B}^{\circ} \rightarrow f_{CP}; t \right)}$$

3 possible contributions

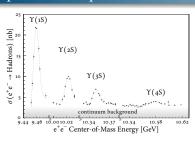
- CP-Violation in decay (direct)
- CP-Violation in mixing (indirect)CP-Violation by interference of
- mixing and decay (mixing induced)

- ▶ For B mesons, contributions from indirect CP-Violation are negligible
- For many decays, loop diagrams contribute to the amplitudes
 possibility to indirectly detect new physics


Measurement of CP-Violation


Experimental challenging task:

- lifetime of B mesons is 1.5 ps
- flavour of B meson has to be known


Solution

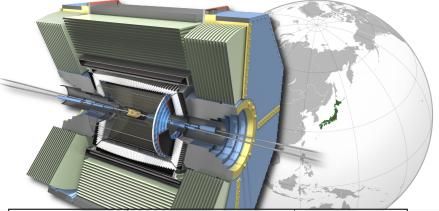
- Υ(4S): coherent B-meson pair production
- one B to determine flavour (tag side),
 other B for CP measurement (CP side)
- ▶ boost system using asymmetric beam energies $t \rightarrow \Delta t = \frac{\Delta z}{\langle \beta y \rangle_c}$

Experimental requirements

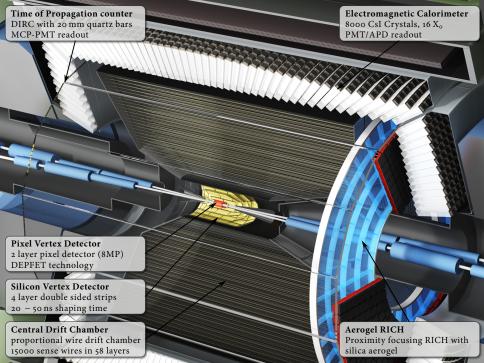
Best place to produce $B\overline{B}$ in a clean environment is at the $\Upsilon(4S)$:

- ▶ lowest energy with free B mesons
- ▶ 1/3 of all events are $B\overline{B}$
- possibility to "turn of" B production by lowering center of mass energy by 50 MeV

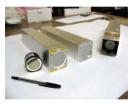
Energy is factor $\mathcal{O}(1000)$ smaller than for LHC:


- there are no real "jets": we see single particles
- mean momentum of charged particles is around 500 MeV

Requirements on the Experiment

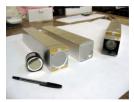

- full reconstruction of B decay
- good separation between different kinds of particles
- very good vertex resolution to determine B lifetime difference
- low material budget

Belle/Belle II Experiment


Asymmetric e^+e^- experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)

	KEKB/Belle	SuperKEKB/Belle II
operation	1999 – 2010	2014 -
peak luminosity	$2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$	$8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
integrated luminosity	1023 fb^{-1} (772 million \overline{BB} pairs)	50 ab ⁻¹

Electromagnetic Calorimeter


- no hadronic calorimeter needed due to low energy
- around 8000 CsI crystals: pure CsI in the endcaps, CsI(Tl) in the barrel
- crystals are expensive and will be reused from Belle
- good pointing and energy resolution

Earthquake

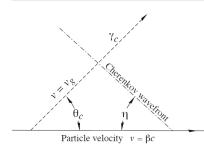
- During the earthquake, the Belle detector (1500 t) moved by 6 cm
- but most probably it moved 20 cm in one direction and then came back
- inner detector was already disassembled but crystals were still in
- so far tests show that crystals are still working

Electromagnetic Calorimeter

- no hadronic calorimeter needed due to low energy
- around 8000 CsI crystals: pure CsI in the endcaps, CsI(Tl) in the barrel
- crystals are expensive and will be reused from Belle
- good pointing and energy resolution

Earthquake

- During the earthquake, the Belle detector (1500 t) moved by 6 cm
- but most probably it moved 20 cm in one direction and then came back
- inner detector was already disassembled but crystals were still in
- so far tests show that crystals are still working

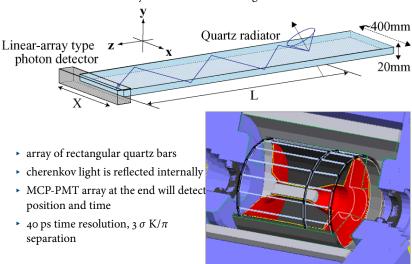


Tracking System

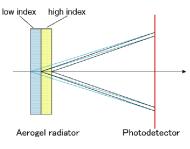
Particle Identification System

Good separation between Kaons and Pions is very important

- ► Momentum and dE/dx will be measured in the tracking system
- Use of Cherenkov detectors to measure speed of the particle


$$\cos \theta_c = (1/n\beta)$$
or
$$\tan \theta_c = \sqrt{\beta^2 n^2 - 1}$$

$$\approx \sqrt{2(1 - 1/n\beta)}$$

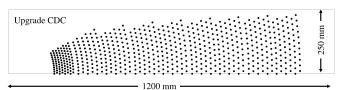

- Cherenkov light is the optical analogy to the sonic boom
- particles that are faster than the speed of light in a given medium emit cherenkov light
- direction of the light is dependent on β

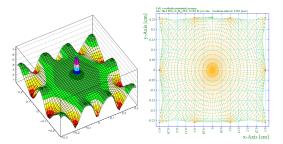
Time of Propagation Counter

DIRC = Detecton of internaly reflected Cherenkov light

Endcap A-RICH

RICH = Ring Imaging Cherenkov Detector

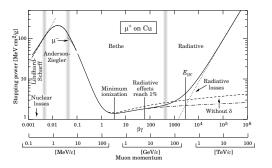

- silica aergoel radiators used to create Cherenkov light
- light will form in circle screen
- two layers of different refractive materials used to produced focussed ring
- 4 σ K/ π separation

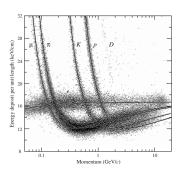

Silica Aerogel

- produced by drying silica gel in a specific way
- ▶ low density (world record at 1.9 mg/cm³)
- low refractive index

Central Drift Chamber

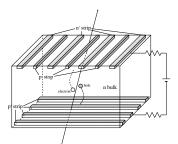
Wire Configuration

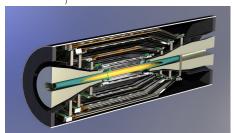




- ▶ wire chamber with ~ 15000 sense wires
- position resolution of $\mathcal{O}(100 \,\mu\text{m})$
- stereo wires to get θ -information
- determination of particle momentum

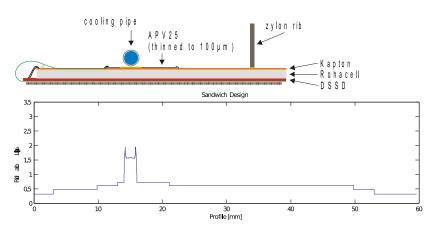
Contribution to PID

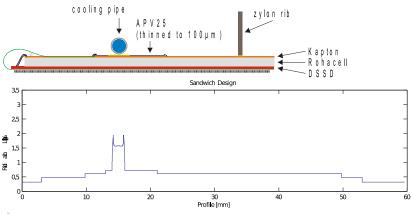

Drift chamber also contributes to particle identification due to different energy losses for different kind of particles



→ Particle Identification uses the combined information of all sub detectors the particle traversed

Strip Vertex Detector

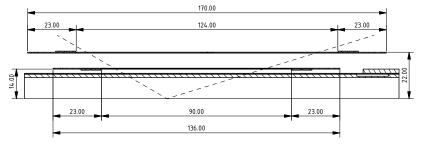

- 4 layer double sided strip detector
- pitch of 50 μ m resp. 160 μ m
- ▶ shaping time of 20 − 50 ns


SVD Material Budget

To reduce the material budget, the readout chips will be thinned down and put directly on the sensor

SVD Material Budget

To reduce the material budget, the readout chips will be thinned down and put directly on the sensor


they call it the "Batman-shape"

Pixel Vertex Detector

innermost part of the detector

- 2 layer pixel detector (8M pixels)
- readout time of 20 ms
- data rate of 240 Gb/s = 30 GB/s
- pixel size of 50 × 50 μ m and 50 × 75 μ m
- single track vertex resolution $\mathcal{O}(15 30 \,\mu\text{m})$

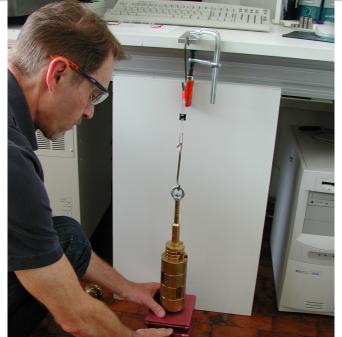
Material budget

PXD different design compared with existing Silicon detectors

- silicon sensors self supporting
- sensitive area will be thinned down to 75 μ m
- almost no additional material inside of the acceptance
- total material budget of 0.28% X_o

But: Silicon is very brittle: Once there is a small crack, this crack can grow very easily

Material budget


PXD different design compared with existing Silicon detectors

- silicon sensors self supporting
- sensitive area will be thinned down to 75 μ m
- almost no additional material inside of the acceptance
- total material budget of 0.28% X_o

But: Silicon is very brittle: Once there is a small crack, this crack can grow very easily

Martin Ritter

Conclusions

Belle/Belle II is a precision measurement focusing on the production of B mesons

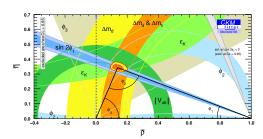
- Center of Mass energy of 10.58 GeV
- boosted system to transform lifetime difference between the two B mesons into vertex difference
- very good vertex detector
- good identification of final state particles (K,π)

Belle II will increase the data sample of BB Events by a factor of 50

- opens possibilities to examine very rare decays
- will push sensitivity of CP measurements to a level to really challenge SM

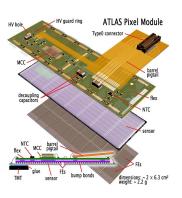
Motivation

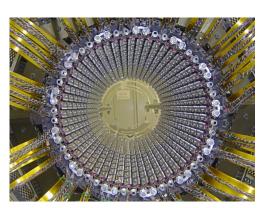
Conclusions


Unitarity Triangle

- unitarity of CKM matrix leads to column constraints $\sum_{k} V_{ik} V_{ik}^* = 0$
- triangles in complex space
- almost degenerate in Kaon system, large angles in B meson system

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = o$$


$$\mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3) \qquad \mathcal{O}(\lambda^3)$$


Tracking System

$$\begin{split} \overline{\rho} &= \left(1 - \frac{\lambda^2}{2}\right) \rho & \overline{\eta} &= \left(1 - \frac{\lambda^2}{2}\right) \eta \\ \phi_1 &= \arg\left(-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*}\right) & \phi_2 &= \arg\left(-\frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*}\right) \\ \phi_3 &= \arg\left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}\right) \end{split}$$

Standard Silicon Detector for example ATLAS

- multiple sensitive modules are glued on support ribs which provide mechanical stability
- support, cooling and cables inside acceptance region (between 5% and 30% $X_{\mbox{\tiny o}})$
- too much material for Belle II (10 GeV CM energy)