Electroweak effects in vector-boson pair production at the LHC

Tobias Kasprzik

In collaboration with A. Bierweiler, H. Kühn and S. Uccirati

Karlsruhe Institute of Technology (KIT), Institut für Theoretische Teilchenphysik (TTP)

[arXiv:1208.3147], [arXiv:1208.3404]

4.-7. September 2012, HP²: High Precision for Hard Processes, München

Outline

Motivation & Introduction

Pair Production of Weak Bosons at the LHC – Theoretical Status

Electroweak Effects in W-Pair Production

- Photon-induced contributions
- Radiative Corrections

Numerical Results

- Electroweak corrections to WW/WZ/ZZ
- Photon-induced processes in W-pair production
- Real radiation in W-pair production

Summary & Conclusions

- ZZ/WW production important irreducible background to inclusive SM Higgs-boson production
- Probe non-abelian structure of the Standard Model (SM) at high energies
- Search for anomalous couplings
- Backgrounds to new-physics searches, i.e. leptons + $\not\!\!\!E_T$ signatures
 - \rightarrow SUSY-particle pair production

Vector-Boson Pair Production – QCD Effects

Extensive study of production of WW, WZ, ZZ, W γ , Z γ , $\gamma\gamma$ at NLO QCD [Campbell, Ellis,

Williams 2005; Campbell, Ellis 1999, . .]

• Results matched with parton showers \oplus combined with soft gluon resummation

[Nason, Ridolfi 2006; Frixione, Webber 2006]

- On-shell leptonic decays of the vector bosons taken into account (narrow-width approximation) retaining all spin information
- anomalous couplings included
- Corrections dominated by the $q\bar{q}$ channels
 - Significant contributions of the channels gg → V₁V₂ ~ 10 % to LO, although formally at O(α²_s) [Glover, van der Bij 1989; Kao, Dicus 1991; Duhrssen et al. 2005]

• Even larger corrections of 30% if event selection for Higgs searches is applied

[Binoth et al. 2006]

Vector-Boson Production at High Energies Sudakov Logarithms

High-energy (Sudakov) limit $s, |t|, |u| \gg M_V^2, \quad V = W, Z$ \rightarrow bosons have to be produced at large p_T

• EW corrections at high energies dominated by universal large logarithms

$$\begin{array}{l} \propto \quad \alpha^L \ln^{2L}(M_V/\sqrt{s}) \quad (\mathrm{LL}) \,, \\ \propto \quad \alpha^L \ln^{2L-1}(M_V/\sqrt{s}) \quad (\mathrm{NLL}) \,, \dots \end{array}$$

at the L-loop level

- Corrections of $\sim -50\%$ at $\sqrt{s} = 2$ TeV (W-pair production)
- Change of sign going from LL to NLL (to NNLL . . .)
 - → substantial cancellations possible!

Tobias Kasprzik (KIT)

EW Corrections to V-Pair Production – Overview

- O(α) high-energy approximation known for WW/WZ/ZZ production, vector bosons treated in pole-approximation [Accomando et al. 2002-2006]
 - \rightarrow final-state leptons phenomenologically accessible

- NNLL effects at two loops published for the WW channel [Kühn, Metzler, Uccirati, Penin 2011]
- We have calculated the full one-loop corrections to on-shell V-pair production at the LHC [Bierweiler, TK, Kühn, Uccirati 2012]

Motivation – Why the full Calculation?

- $\bullet\,$ First LHC results on total cross sections for pp \to WW/WZ/ZZ have been published
 - ATLAS: pp \rightarrow W⁺W⁻ at 7 TeV, 1.02 fb⁻¹ [arXiv:1203.6232 [hep-ex]],
 - $pp \rightarrow W^+W^-$ at 8 TeV, 5.8 fb^{-1} $_{[\rm ATLAS-CONF-2012-090]}$
 - CMS: pp \rightarrow WW/WZ/ZZ at 7 TeV, 1.1 fb⁻¹ [CMS PAS EWK-11-010], pp \rightarrow WW(ZZ) at 8 TeV, 3.5(5.3) fb⁻¹ [CMS PAS SMP-12-013, CMS PAS SMP-12-014]

experimental error at the level of 15%; WW dominated by systematics, ZZ dominated by statistics

⇒ Quantify EW effects in this SM benchmark process

- Focus of LHC physics: V-pair production at high energies, $\hat{s} \gg M_W^2$:
 - V-pair production dominated by small scattering angles, i.e. small \hat{t}, \hat{u}
 - Potentially sizable effects due to anomalous couplings
 - Until now, no predictions for EW effects in this particular kinematic regime!
- Electroweak corrections potentially large

Lowest-Order Contributions to $pp \rightarrow W^-W^+ + X$

• Partonic LO contributions at $\mathcal{O}(\alpha^2)$

• Photon-induced contributions at $\mathcal{O}(\alpha^2)$

- Adopt MRST2004QED PDF set [Martin et al. 2005]
- Potentially large contribution at high invariant masses!
- Caveat: large theoretical uncertainties!

Virtual EW Corrections to $pp \rightarrow W^-W^+ + X$

- On-shell renormalization of SM parameters
- We use the Fermi scheme to calculate the loop corrections. \rightarrow universal corrections to Δr absorbed in effective LO coupling
- $V_{ij}^{\text{CKM}} = \delta_{ij}$ within the loops \rightarrow no renormalization of V_{ij}^{CKM}

Real EW Corrections - Infrared Singularities

Real photon radiation at $\mathcal{O}(\alpha^3)$ (generic diagrams): $q\bar{q} \rightarrow W^-W^+ + \gamma$

- Soft singularities due to soft photons
- Initial-state collinear singularities due to collinear photon radiation off initial-state quarks → renormalization of PDFs
- Introduce small quark mass m_q and infinitesimal photon mass λ to regularize divergences → results exhibit unphysical ln m_q and ln λ terms

Apply phase-space slicing for numerically-stable evaluation of phase-space integral

Numerical Results (I) – Total Cross Sections

LHC at 8 TeV:

no cuts	$\sigma_{ m LO}^{qar q'}$ (pbarn)	δ_{EW} (%)	$\delta_{\gamma\gamma}$ (%)
W^+W^-	35	-0.4	1.5
W^+Z	9	-1.4	_
W^-Z	5	-1.3	_
ZZ	6	-4.1	—

LHC at 14 TeV:

no cuts	$\sigma_{ m LO}^{qar q'}$ (pbarn)	δ_{EW} (%)	$\delta_{\gamma\gamma}$ (%)
W^+W^-	75	-0.5	1.6
W^+Z	19	-1.4	_
$W^{-}Z$	12	-1.4	_
ZZ	12	-4.2	—

•
$$\sigma = \sigma_{\text{LO}} \times (1 + \delta)$$

• Setup: MSTW2008LO PDFs [Martin et al. 2009], $\mu_R = \mu_F = (m_{T,1} + m_{T,2})/2$

Tobias Kasprzik (KIT)

Numerical Results (II) – pp \rightarrow W⁻W⁺(γ)

Default cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$, small scattering angles

- assume $\int \mathcal{L} dt = 200 \text{ fb}^{-1}$ $\Rightarrow 1000 \text{ WW events with}$ $M_{WW} > 2 \text{ TeV}$
- rapidly increasing admixture of $\gamma\gamma$

- large admixture of $\gamma\gamma$ (up to 30%)
- sizable negative EW corrections (-30%) at high energies, comparable to QCD corrections

Numerical Results (III) – pp \rightarrow W⁻W⁺(γ)

Default cuts: $p_{T,W^{\pm}} > 15$ GeV, $|y_{W^{\pm}}| < 2.5$, large scattering angles

- assume $\int \mathcal{L} dt = 200 \text{ fb}^{-1}$ $\Rightarrow 1000 \text{ WW events with } p_{\text{T}} > 500 \text{ GeV}$
- decreasing admixture of gg, increasing admixture of $\gamma\gamma$

- large admixture of $\gamma\gamma$ (10%!)
- large negative EW corrections (-45%), comparable to QCD corrections

No compensation between $\gamma\gamma \rightarrow WW$ and weak corrections! \implies Different angular distributions!

- $\sigma(\gamma\gamma \to WW) \to \frac{8\pi\alpha^2}{M_W^2}$ for large \hat{s}
 - ⇒ strong enhancement in forward & backward directions

weak corrections:

negative Sudakov logs for large \hat{s} and \hat{t}

- \Rightarrow negative corrections for large scattering angles
- $gg \rightarrow WW$ small, isotropic
- implications for $d\sigma/d\Delta y_{WW}$ with $\Delta y_{WW} = y_{W^+} y_{W^-}$ (for fixed M_{WW} this corresponds to the angular distribution in the W-W rest frame!)

Numerical Results (IV) – pp \rightarrow W⁻W⁺

Default cuts: $p_{\mathrm{T,W^{\pm}}} > 15$ GeV, $y_{\mathrm{W^{\pm}}} < 2.5$

- WW production dominated by events near threshold, isotropic production at small Δy_{WW}
- 5% increase of cross section by gg channel

- EW corrections at the percent level
- Sizable contributions from $\gamma\gamma$ at large $|\Delta y_{WW}|$

Numerical Results (V) – pp \rightarrow W⁻W⁺(γ)

High-energy cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$, $M_{WW} > 1$ TeV

- WW production dominated by small scattering angles
- drastic forward-backward peaking of $\gamma \gamma \rightarrow WW$
- drastic distortion of angular distribution
- $\Sigma \delta$ varies from -30% and +45% for $M_{WW} > 1$ TeV!

Low energies: Phase-space and perturbative suppression of $pp \rightarrow WW + (W/Z)$ \Rightarrow contribution below 1%

High energies: Logarithmic enhancement of additional soft/collinear W- or Z-boson radiation

 \Rightarrow Investigation of WW + W/Z production as background to W pairs at large $p_{\rm T}$, $M_{\rm WW}$

- invisible decay of $Z \rightarrow \nu \bar{\nu}$
- collinear emission
- . . .

Simplified approach: (details depend on experimental analysis)

- Include $pp \rightarrow W^-W^+Z$ with totally inclusive Z
- **(a)** Include $pp \rightarrow W^-W^+W^{\pm}$; treat W^{\pm} with lowest p_T totally inclusively

Numerical Results (VI) – "Real Radiation" of W/Z

- Corrections due to hard photons ($p_{T,\gamma} > 15$ GeV, $|y_{\gamma}| < 2.5$) below 5 %
- Contributions of massive-boson radiation below 5 %

Numerical Results (VII) – WW, W⁺Z and ZZ production

- moderate EW corrections to WZ production
- large EW corrections to ZZ production

Numerical Results (VIII) – WW, W⁺Z and ZZ production

LHC at 8 TeV, default cuts: $p_{T,V} > 15$ GeV, $|y_V| < 2.5$, small scattering angles

- moderate EW corrections to WZ production
- large EW corrections to ZZ production
- EW corrections important at high energies and small scattering angles

Summary & Conclusions

• Proper understanding of V-pair production processes crucial at the LHC:

- Understand SM at highest energies
- Understand backgrounds to Higgs- and BSM-physics searches

• We have computed the full EW corrections to V-pair production at the LHC

- Small corrections to the total cross section
- But: Sizable negative corrections at high energies
- **W-pair production:** significant contributions of photon-induced channels at large scattering angles
- Real-radiation contributions of W/Z small; further investigation needed?

• Future work:

- Leptonic decays of the vector bosons should be included.
- Discuss combination of EW and QCD effects
- Discuss interplay of anomalous couplings and EW effects

Summary & Conclusions

• Proper understanding of V-pair production processes crucial at the LHC:

- Understand SM at highest energies
- Understand backgrounds to Higgs- and BSM-physics searches

• We have computed the full EW corrections to V-pair production at the LHC

- Small corrections to the total cross section
- But: Sizable negative corrections at high energies
- **W-pair production:** significant contributions of photon-induced channels at large scattering angles
- Real-radiation contributions of W/Z small; further investigation needed?

• Future work:

- Leptonic decays of the vector bosons should be included.
- Discuss combination of EW and QCD effects
- Discuss interplay of anomalous couplings and EW effects

Thank You!

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp \rightarrow V_1 V_2(+\gamma) + X$ $\rightarrow \ell_1 \ell_2 \overline{\ell}_1 \overline{\ell}_2(+\gamma) + X$

Hadronic cross sections

$$d\sigma_{AB}(p_{A}, p_{B}) = \sum_{a,b} \int_{0}^{1} dx_{a} \int_{0}^{1} dx_{b} f_{a/A}(x_{a}, \mu_{\rm F}) f_{b/B}(x_{b}, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_{a}, p_{b}, \mu_{\rm F}, \mu_{\rm R}) \\ \times \mathcal{F}^{(4\ell+\gamma)}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{\{a,b\}}^{\mu} = x_{\{a,b\}} P_{\{A,B\}}^{\mu}$$

Dependence on μ_R, μ_F reduced by inclusion of higher perturbative orders

 F^(4ℓ+γ) incorporates definition of observables + phase-space cuts

Tobias Kasprzik (KIT)

V-pair production at the LHC

Reminder: Calculation of Hadronic Cross Sections

Schematic illustration for $pp \rightarrow V_1 V_2(+\gamma) + X$ $\rightarrow \ell_1 \ell_2 \overline{\ell}_1 \overline{\ell}_2(+\gamma) + X$

Hadronic cross sections

$$d\sigma_{AB}(p_A, p_B) = \sum_{a,b} \int_0^1 dx_a \int_0^1 dx_b f_{a/A}(x_a, \mu_{\rm F}) f_{b/B}(x_b, \mu_{\rm F}) d\hat{\sigma}_{ab}^{\rm NLO}(p_a, p_b, \mu_{\rm F}, \mu_{\rm R}) \\ \times \mathcal{F}^{(4\ell+\gamma)}(\{\mathcal{O}_{\rm FS}\}), \qquad p_{\{a,b\}}^{\mu} = x_{\{a,b\}} P_{\{A,B\}}^{\mu}$$

NLO partonic cross section:

$$\hat{\sigma}_{ab}^{\text{NLO}} = \hat{\sigma}_{ab}^{\text{LO}} + \hat{\sigma}_{ab}^{\text{virt}} + \hat{\sigma}_{ab}^{\text{real}}$$

Tobias Kasprzik (KIT)

Double-Pole Approximation (DPA)

 Lowest order: Amplitude given as a product of on-shell (OS) production amplitude ⊗ on-shell decay amplitude ⊗ Breit–Wigner:

$$\mathcal{M}_{\text{Born,DPA}}^{\bar{q}_1 q_2 \to V_1 V_2 \to 4f} = \frac{1}{k_1^2 - M_1^2 + iM_1\Gamma_1} \frac{1}{k_2^2 - M_2^2 + iM_2\Gamma_2} \times \sum_{\lambda_1, \lambda_2} \mathcal{M}_{\text{Born}}^{\bar{q}_1 q_2 \to V_{1,\lambda_1} V_{2,\lambda_2}} \mathcal{M}_{\text{Born}}^{V_{1,\lambda_1} \to f_3\bar{f}_4} \mathcal{M}_{\text{Born}}^{V_{2,\lambda_2} \to f_5\bar{f}_6}$$

• Use OS-projected momenta \hat{k} [Denner, Dittmaier, Roth, Wackeroth 2000] in the OS matrix elements:

$$\hat{k}_{1,0} = \frac{1}{2}\sqrt{\hat{s}}, \quad \hat{\mathbf{k}}_1 = \frac{\mathbf{k}_1}{|\mathbf{k}_1|}\beta_{\mathrm{W}}\frac{\sqrt{\hat{s}}}{2}, \quad \dots$$

• NLO: EW corrections consist of factorizable and non-factorizable contributions, e.g.

$$\mathcal{M}_{\text{fact}} = \frac{R(k_1, k_2, \theta)}{(k_1^2 - M_1^2 + iM_1\Gamma_1) (k_2^2 - M_2^2 + iM_2\Gamma_2)}$$

Caution: Gauge invariance!

EW corrections to pp $\rightarrow W^+W^- \rightarrow \nu_e e^+ \mu^- \bar{\nu}_{\mu}$ (DPA)

- Standard LHC event selection cuts applied to final-state leptons and missing transverse momentum; additionally $M_{e^+\mu^-} > 500$ GeV required
- Large negative corrections at large transverse momenta
- Substantial negative corrections to inclusive observables
- Error due to DPA about 10% in the relative corrections
- EW corrections significantly larger than experimental error throughout the whole energy range (for $L \sim 30 \text{ fb}^{-1}$)

[Accomando, Denner, Kaiser: arXiv:0409247 [hep-ph]]

Photon PDFs (MRST2004QED)

• Simple LL ansatz for $f_{\gamma/p}(x, Q_0^2)$

$$f_{\gamma/p}(x,Q_0^2) = \frac{\alpha}{2\pi} \left[\frac{4}{9} \ln\left(\frac{Q_0^2}{m_u^2}\right) f_{u/p,v}(x,Q_0^2) + \frac{1}{9} \ln\left(\frac{Q_0^2}{m_d^2}\right) f_{d/p,v}(x,Q_0^2) \right] \otimes \frac{1 + (1-x)^2}{x}$$

• Running of $f_{q/p}(x, Q^2)$ at $\mathcal{O}(\alpha)$ affected by photon PDFs!

$$\frac{\partial f_{q/p}(x,\mu^2)}{\partial \ln \mu^2} = \frac{\alpha}{2\pi} \int_x^1 \frac{\mathrm{d}y}{y} \left[P_{qq}(y) \ Q_q^2 f_{q/p}(x/y,\mu^2) + P_{q\gamma}(y) \ Q_q^2 f_{\gamma/p}(x/y,\mu^2) \right]$$

Momentum conservation

$$\int_0^1 \mathrm{d}x \, x \left[\sum_q f_{q/p}(x,\mu^2) + f_{g/p}(x,\mu^2) + f_{\gamma/p}(x,\mu^2) \right] = 1$$

- \Rightarrow QED effects on $f_{q/p}(x, \mu^2)$ small!
- \Rightarrow Still large conceptual uncertainties in $f_{\gamma,0}$

Measure Photon PDFs?

Consider the DIS process

$$ep \rightarrow e\gamma + X$$

with high- $p_{\rm T}$ back-to-back e, γ in the final state

$$\sigma(e{
m p}
ightarrow e\gamma+X)=\int {
m d}x^\gamma f_{\gamma/{
m p}}(x^\gamma,\mu^2)\hat\sigma(e\gamma
ightarrow e\gamma) \ ,$$

related to Compton scattering

x^γ = E^Υ_TE_e exp(η^γ)/2E_pE_e-E^γ_TE_e exp(-η^γ)
 f_{γ/p}(x^γ, μ²) could be in principle extracted from HERA data!

EW Input Schemes – Definition of α

- $\alpha(0)$: On-shell definition in the Thomson-limit (zero momentum transfer) $\bar{u}(p)\Gamma^{Ae\bar{e}}_{\mu}(p,p)u(p)|_{p^2=m_e^2} = e(0)\bar{u}(p)\gamma_{\mu}u(p), \alpha(0) = e(0)^2/4\pi$
- $\alpha(M_Z)$ obtained via renormalization-group running from 0 to weak scale M_Z

$$\alpha(M_{\rm Z}) = \frac{\alpha(0)}{1 - \Delta \alpha(M_{\rm Z})}, \quad \Delta \alpha(M_{\rm Z}) = \prod_{f \neq t}^{AA}(0) - \operatorname{Re} \prod_{f \neq t}^{AA}(M_{\rm Z}^2)$$

• $\alpha_{G_{\mu}}$ defined through the Fermi constant related to the muon lifetime

$$\alpha_{G_{\mu}} = \frac{\sqrt{2}G_{\mu}M_{\mathrm{W}}^2 s_{\mathrm{w}}^2}{\pi} = \frac{\alpha(0)}{1 - \Delta r}$$

 Δr includes corrections to muon lifetime not contained in QED-improved Fermi model

• light-fermion mass logs contained in $\prod_{f \neq t}^{AA}(0)$ resummed in effective couplings $\alpha(M_Z)$ and $\alpha_{G_{\mu}}$

Two-cut-off phase-space slicing

• Definition of bremsstrahlung phase space:

$$\sigma_{\mathrm{real}} = \int \mathrm{dPS}(\mathrm{W}^-\mathrm{W}^+\gamma)|\mathcal{M}^\gamma|^2$$

• Phase-space decomposition:

$$\sigma_{\rm real} = \sigma_{\rm hard} + \sigma_{\rm soft} + \sigma_{\rm coll}$$

Phase-Space Slicing

• Soft limit: $E_{\gamma} < \Delta E \ll M_{\rm W}$

$$\sigma_{\text{soft}}(\Delta E) = -\sigma_{\text{LO}} \left[\frac{e^2}{(2\pi)^3} \int_{|\mathbf{k}_{\gamma}| < \Delta E} \frac{\mathrm{d}^3 \mathbf{k}_{\gamma}}{2\sqrt{\mathbf{k}_{\gamma}^2 + \lambda^2}} \sum_{ij} \frac{\pm Q_i Q_j(p_i p_j)}{(p_i k_{\gamma})(p_j k_{\gamma})} \right]$$

• Collinear limit: $\theta_{q\gamma} < \Delta \theta \ll 1$, $E_{\gamma} > \Delta E$

$$\sigma_{\text{coll},q}(\Delta E, \Delta \theta) = \frac{\alpha Q_q^2}{2\pi} \int_0^{1-2\Delta E/\sqrt{\hat{s}}} dz \, \frac{(1+z^2)}{1-z} \left(\ln \frac{\hat{s}(\Delta \theta)^2}{4m_q^2} - \frac{2z}{1+z^2} \right) \sigma_{\text{LO}}(z\hat{s})$$

- Hard bremsstrahlung: $\theta_{q\gamma} > \Delta \theta$, $E_{\gamma} > \Delta E$; numerical evaluation of $\sigma_{hard}(\Delta E, \Delta \theta)$ without regulators
- Numerical result independent of $\ln \Delta E$ and $\ln \Delta \theta$

$\ln m_q$ and $\ln \lambda$ terms cancel in the sum $\sigma_{virt} + \sigma_{soft} + \sigma_{coll}$ in infrared-safe observables

Tobias Kasprzik (KIT)

EW Corrections to $pp \rightarrow W^-W^+ + X$ – Technicalities

Virtual corrections computed in the FeynArts/FormCalc/LoopTools(FF)

framework [(FA): Küblbeck, Böhm, Denner 1990; (FC,LT): Hahn, Pérez Victoria 1999; Hahn 2001; (FF): van Oldenborgh, Vermaseren 1990]

FeynArts-3.5:

- Automatic generation of diagrams
- Calculation of amplitudes

FormCalc-6.1:

- Algebraical simplification of amplitudes, introduction of tensor coefficients
- Analytical calculation of squared amplitudes
- Spin-, colour- and polarization sums
- Generation of Fortran code

LoopTools-2.5:

- Numerical Passarino–Veltman reduction within Fortran
- Numerically-stable evaluation of scalar integrals

Bremsstrahlung amplitudes computed with FeynArts/FeynCalc \oplus

Madgraph [Alwall et al.], numerical phase-space integration within Fortran using the Vegas algorithm

$\mathrm{pp} ightarrow \mathrm{W}^{+}(\gamma) - \mathrm{Numerical Results}$

No cuts

- LO cross section dominated by $q\bar{q}$ contributions
- Rapid decrease of cross section for increasing invariant masses
- EW corrections small even for large values of *M*_{WW}
- Large contributions (+80%!) from $\gamma\gamma \rightarrow WW$ at high invariant masses
- \Rightarrow Leptonic decays?

 $pp \rightarrow W^-W^+(\gamma)$ – Numerical Results

LHC acceptance cuts

- LO cross section dominated by $q\bar{q}$ contributions
- Rapid decrease of cross section for increasing invariant masses

- Employ LHC cuts on decay products: $p_{T,l} > 20 \text{ GeV}, |y_l| < 3, p_{T,miss} > 25 \text{ GeV}$
- ⇒ relative effect of $\gamma\gamma \rightarrow WW$ reduced by factor 2 at large M_{WW}

Tobias Kasprzik (KIT)

EW Corrections to $pp \rightarrow W^-W^+$ – Numerical Results

Default cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$

- WW production dominated by events near threshold, isotropic production at small Δy_{WW}
- 5% increase of cross section by gg channel

- EW corrections at the percent level
- Sizable contributions from $\gamma\gamma$ at large $|\Delta y_{WW}|$

$pp \rightarrow W^-W^+(\gamma)$ – Numerical Results

Default cuts: $p_{\mathrm{T,W^{\pm}}} > 15$ GeV, $|y_{\mathrm{W^{\pm}}}| < 2.5$

- assume $\int \mathcal{L} dt = 200 \text{ fb}^{-1}$ $\Rightarrow 1000 \text{ WW events with } p_{\text{T}} > 500 \text{ GeV}$
- decreasing admixture of gg, increasing admixture of $\gamma\gamma$

- large admixture of $\gamma\gamma$ (10%!)
- large negative EW corrections (-45%), comparable to QCD corrections

EW Corrections to $pp \rightarrow W^-W^+$ – Numerical Results

Very-high-energy cuts: $p_{T,W^{\pm}} > 15$ GeV, $y_{W^{\pm}} < 2.5$, $M_{WW} > 3$ TeV

- NLO EW as important as QCD
- extreme distortion due to $\gamma\gamma$ (caveat: high uncertainty in photon PDFs)

Transverse-momentum distribution at the LHC8

Invariant-mass distribution at the LHC8

Transverse-momentum distribution at the Tevatron

Invariant-mass distribution at the Tevatron

