$gg \rightarrow ZZ$ Higgs-continuum interference and zero-width approximation failure

Nikolas Kauer Royal Holloway, University of London

in collaboration with Giampiero Passarino

HP² High Precision for Hard Processes at the LHC Workshop MPI Munich September 6, 2012

Outline

- Introduction
- Zero-width approximation
- Light Higgs: Inclusive analysis
- Light Higgs: Analysis with selection cuts
- Heavy Higgs: Interference
- Summary

Gluon-fusion Higgs production

Leading order (LO), loop-induced Georgi, Glashow, Machacek, Nanopoulos (1978)

Next-to-leading order (NLO), $m_t \rightarrow \infty$ approx. (few percent accuracy) Djouadi, Spira, Zerwas (1991); Dawson (1991)

NLO, full mt, mb dependence, LHC: K - 1 ~ 80-100% Graudenz, Spira, Zerwas (1993); Spira, Djouadi, Graudenz, Zerwas (1995)

Next-to-leading order (NNLO), m_t → ∞ approx., NNLO/NLO – 1 ~ 25% Harlander (2000); Catani, de Florian, Grazzini (2001); Harlander, Kilgore (2001, 2002); Anastasiou, Melnikov (2002); Ravindran, Smith, van Neerven (2003); Blümlein, Ravindran (2005); Catani, Grazzini (2007)

soft-gluon resummation,

leading soft contributions @ NNNLO Moch, Vogt (2005); Laenen, Magnea (2006); Idilbi, Ji, Ma, Yuan (2006); Ravindran (2006)

accuracy of $m_t \rightarrow \infty$ approx. @ NNLO (<1% if $M_H \lesssim 300$ GeV) Marzani, Ball, Del Duca, Forte, Vicini (2008); Harlander, Ozeren (2009); Harlander, Mantler, Marzani, Ozeren (2010); Pak, Rogal, Steinhauser (2009, 2010); Anastasiou, Boughezal, Petriello (2009)

Electroweak corrections: +5% (M_H = 120 GeV) to -2% (M_H = 300 GeV) Diouadi, Gambino (1994); Aglietti, Bonciani, Degrassi, Vicini (2004); Degrassi, Maltoni (2004); Actis, Passarino, Sturm, Uccirati (2009); Actis, Passarino, Sturm, Uccirati (2008); Anastasiou, Boughezal, Petriello (2008); Keung, Petriello (2009); Brein (2010)

Recent updates de Florian, Grazzini (2009); Baglio, Djouadi (2010, 2011); Baglio, Djouadi, Ferrag, Godbole (2011); Catani, Grazzini (2011); Spira (HIGLU update); de Florian, Ferrera, Grazzini, Tommasini (2011, 2012) (HRes); LHCHXS2 (2012); Anastasiou, Buehler, Herzog, Lazopoulos (2012) (Ihixs); de Florian, Grazzini (2012)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gluon-fusion Higgs $\rightarrow VV$ and continuum VV production

 $gg \rightarrow H \rightarrow VV$ searches Dittmar, Dreiner (1996); Davatz, Giolo-Nicollerat, Zanetti (2006); Mellado, Quayle, Sau Lan Wu (2007); Davatz, Dittmar, Giolo-Nicollerat (2007); Davatz (2007); Quayle (2008); Mellado, Ruan, Zhang (2011)

QCD corrections/shower MCs for $gg \rightarrow H \rightarrow VV$ searches Cranmer, Mellado, Quayle, Sau Lan Wu (2003); Davatz, Dissertori, Dittmar, Grazzini, Pauss (2004); Davatz, Stöckli, Anastasiou, Dissertori, Dittmar, Melnikov, Petriello (2006); Davatz, Dittmar, Pauss (2006); Grazzini (2006, 2008); Anastasiou, Dissertori, Stöckli (2007); Anastasiou, Dissertori, Stöckli, Webber (2008); Frederix, Grazzini (2008); Anastasiou, Dissertori, Grazzini, Stöckli, Webber (2009)

 $q\bar{q} \rightarrow VV$ (LO, NLO, decays) Brown, Mikaelian (1979); Stirling, Kleiss, Ellis (1985); Gunion, Kunszt (1986); Muta, Najima, Wakaizumi (1986); Berends, Kleiss, Pittau (1994); Ohnemus (1991); Mele, Nason, Ridolfi (1991); Ohnemus, Owens (1991); Frixione (1993); Ohnemus (1994); Dixon, Kunszt, Signer (1998, 1999); Campbell, Ellis (1999) (MCFM); Campbell, Ellis, Williams (2011) (MCFM); Melia, Nason, Röntsch, Zanderighi (2011) (POWHEG BOX)

 $gg \rightarrow VV$ and $gg \rightarrow VVg$ [loop induced] (LO, decays) Dicus, Kao, Repko (1987); Glover, van der Bij (1989); Kao, Dicus (1991); Matsuura, v.d. Bij (1991); Zecher, Matsuura, v.d. Bij (1994); Dührssen, Jakobs, v.d. Bij, Marquard (2005); Binoth, Ciccolini, NK, Krämer (2005, 2006) (gg2WW); Binoth, NK, Mertsch (2008) (gg2ZZ); Campbell, Ellis, Williams (2011) (MCFM); Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli (2011) (aMC@NLO); Melia, Melnikov, Rontsch, Schulze, Zanderighi (2012) (MCFM); NK (2012) (gg2VV); Agrawal, Shivaji (2012); VBFNLO-2.6

Higgs-continuum VV interference Glover, van der Bij (1989); Binoth, Ciccolini, NK, Krämer (2006) (gg2WW); Campbell, Ellis, Williams (2011) (MCFM); NK (2012) (gg2VV); Passarino (2012); NK, Passarino (2012); VBFNLO-2.6; S.P. Martin (2012_F γγ) =

Zero-width approximation (ZWA) a.k.a. narrow-width approximation (NWA)

for scalar particle:

$$D(q^{2}) = \frac{1}{(q^{2} - M^{2})^{2} + \Gamma^{2} M^{2}} = \frac{\pi}{M \Gamma} \delta \left(q^{2} - M^{2}\right)$$
$$+ PV \left[\frac{1}{(q^{2} - M^{2})^{2}}\right] + \sum_{n=0}^{N} c_{n}(\alpha) \delta_{n} \left(q^{2} - M^{2}\right)$$
with $\delta_{n}(x) := (-1)^{n} / n! \delta^{(n)}(x)$

in limit
$$\Gamma \to 0$$
: $D(q^2) \sim K \delta(q^2 - M^2)$ with $K = \frac{\pi}{M\Gamma} = \int_{-\infty}^{+\infty} dq^2 D(q^2)$

common error estimate $\mathcal{O}(\Gamma/M)$ not reliable:

$$\begin{split} \sigma &= \frac{1}{2s} \left[\int_{q_{\min}^2}^{q_{\max}^2} \frac{dq^2}{2\pi} \left(\int d\phi_p |\mathcal{M}_p(q^2)|^2 D(q^2) \int d\phi_d |\mathcal{M}_d(q^2)|^2 \right) \right] \\ \sigma_{\text{ZWA}} &= \frac{1}{2s} \left(\int d\phi_p |\mathcal{M}_p(M^2)|^2 \right) \left(\int_{-\infty}^{\infty} \frac{dq^2}{2\pi} D(q^2) \right) \left(\int d\phi_d |\mathcal{M}_d(M^2)|^2 \right) \\ \sigma_{\text{ZWA}} &= \frac{1}{2s} \left(\int d\phi_p |\mathcal{M}_p|^2 \right) \frac{1}{2M\Gamma} \left(\int d\phi_d |\mathcal{M}_d|^2 \right) \Big|_{q^2 = M^2} \end{split}$$

tails of Breit-Wigner $(\frac{\sigma_{\text{tail}}}{\sigma} \approx \frac{1}{n\pi} \text{ with } |\sqrt{q^2} - M| > n\Gamma)$ are not nearly as suppressed as tails of Gaussian for $H \to f\bar{f}$: $|\mathcal{M}_d(q^2)|^2 \sim m_f^2 q^2$, for $H \to VV$: $|\mathcal{M}_d(q^2)|^2 \sim (q^2)^2$ for $\sqrt{q^2} \gtrsim 2 M_V$

ZWA: the big picture

 $gg \rightarrow H \rightarrow$ all:

Anastasiou, Buehler, Herzog, Lazopoulos (2012)

・ロト ・同ト ・ヨト ・ヨト

Light Higgs: Inclusive analysis

Signal cross section calculated with HTO (Passarino, unpublished):

complex pole, OFFP schemes Goria, Passarino, Rosco (2011); Passarino, Sturm, Uccirati (2010); Actis, Passarino (2006)

$$\sigma_{gg \to H \to ZZ}(M_{ZZ}) = \frac{1}{\pi} \sigma_{gg \to H} \left(M_{ZZ} \right) \frac{M_{ZZ}^4}{\left| M_{ZZ}^2 - s_H \right|^2} \frac{\Gamma_{H \to ZZ} \left(M_{ZZ} \right)}{M_{ZZ}}$$

Higgs complex pole: $s_H = \mu_H^2 - i \, \mu_H \, \gamma_H$

Note: γ_H is not the on-shell width, but numerical difference tiny for light Higgs GPR (2011) $\sigma_{gg \rightarrow H}(M_{ZZ})$: NNLO QCD LHCHXS2 (2012), NLO EW Actis, Passarino, Sturm, Uccirati (2008) $\Gamma_{H \rightarrow ZZ}(M_{ZZ})$: NLO + leading NNLO Bredenstein, Denner, Dittmaier, Weber (2007) using MSTW2008 PDF sets Martin, Stirling, Thorne, Watt (2009)

$$\mu_H=125~{\rm GeV},~\gamma_H=4.03$$
 MeV, $\mu_R=\mu_F=M_{ZZ}$

Light Higgs: Inclusive analysis

NNLO $gg \rightarrow H \rightarrow ZZ$: ZZ invariant mass distribution (black, $M_H = 125$ GeV)

N. Kauer $gg \rightarrow ZZ$ Higgs-continuum interference and zero-width approximation failure HP2@MPI September 6, 2012 8 / 2

Light Higgs: Inclusive analysis

Total cross-sections:

	Tot [pb]	$M_{ZZ}>2M_Z$ [pb]	R
gg ightarrow H ightarrow all	19.146	0.1525	0.8%
gg ightarrow H ightarrow ZZ	0.5462	0.0416	7.6%

 $gg \rightarrow H \rightarrow \gamma\gamma$: the effect is drastically reduced and confined to the region $M_{\gamma\gamma}$ between 157 GeV and 168 GeV, where the distribution is already five orders of magnitude below the peak

Calculate $gg \to H \to VV \to$ leptons (V=W,Z) cross sections and distributions at LO using gg2VV with Higgs in ZWA as well as off-shell including interference with continuum VV production (γ^* contributions included, important for $M_H < 2M_Z$) including experimental selection cuts.

- pp collisions at $\sqrt{s} = 8 \text{ TeV}$
- all results for single lepton flavour combination (ℓ^{\pm} and ν)
- input parameters: LHC Higgs Cross Section WG, arXiv:1101.0593 [hep-ph], App. A (with NLO Γ_V and G_μ scheme)
- MSTW2008NNLO PDF
- · finite top and bottom quark mass effects included
- $M_H=125~(200)\,{\rm GeV}$ with $\Gamma_H=0.004434~(1.428)\,{\rm GeV}$ (HDECAY)
- $\mu_R = \mu_F = M_H/2$
- fixed-width Breit-Wigner for Higgs and V propagators
- $V_{\text{CKM}} = 1$: negligible error (< 10^{-5})

For on/off-shell comparison, define the ZWA M_{VV} distribution as:

$$\left(\frac{d\sigma}{dM_{VV}}\right)_{\rm ZWA} = \sigma_{H,\rm ZWA} \; \frac{M_H \Gamma_H}{\pi} \; \frac{2M_{VV}}{\left(M_{VV}^2 - M_H^2\right)^2 + (M_H \Gamma_H)^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇ ◇

ZWA/off-shell and signal-background interference measures

Relative measure for accuracy of ZWA/off-shell effect

 $R_0 := rac{\sigma_{H,\mathsf{ZWA}}}{\sigma_{H,\mathsf{offshell}}}$

Relative measures for interference effect

S + B-inspired measure:

$$R_1 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}} + \mathcal{M}_{\mathsf{cont}}|^2)}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2) + \sigma(|\mathcal{M}_{\mathsf{cont}}|^2)}$$

 S/\sqrt{B} -inspired measure:

$$R_2 := \frac{\sigma(|\mathcal{M}_{\mathsf{H}}|^2 + 2\operatorname{\mathsf{Re}}(\mathcal{M}_{\mathsf{H}}\mathcal{M}^*_{\operatorname{cont}}))}{\sigma(|\mathcal{M}_{\mathsf{H}}|^2)}$$

 $gg \to H \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell}'$ at $M_H = 125 \,\text{GeV}$

Same- and different-flavour 4-charged-lepton channels

In these search channels, the invariant mass of the intermediate Higgs $(M_{H^*} \equiv M_{ZZ})$ can be reconstructed. The M_{ZZ} spectrum is hence used as the discriminant variable in the final stage of the analysis, and the test statistic is evaluated with a binned maximum-likelihood fit of signal and background models to the observed M_{ZZ} distribution. For light Higgs masses, the observed M_{ZZ} distribution is dominated by experimental resolution effects and for example fitted as Gaussian with a standard deviation of 2-2.5 GeV (or similar bin sizes are used). The constraints on M_{ZZ} (binning) introduce an error of order 0.1%. Invariant masses above $2M_Z$, where large deviations from the Breit-Wigner shape occur, are excluded by the experimental procedure. Higgs-continuum interference effects are negligible.

白マイド・トライ

	$gg ightarrow H ightarrow ZZ ightarrow \ell \ell \ell \ell$ and $\ell \ell \ell' \ell'$ at $M_H = 125{ m GeV}$									
	g_{\pm}	$g (\to H) \to H$								
	σ [fb], $pp, \sqrt{s}=8{\rm TeV}, M_H=125{\rm GeV}$					interfe	erence			
mode	$H_{\sf ZWA}$	$H_{\rm offshell}$	cont	$ H_{\rm ofs}$ +cont $ ^2$	R_0	R_1	R_2			
$\ell \bar{\ell} \ell \bar{\ell}$	0.0748(2)	0.0747(2)	0.000437(3)	0.0747(6)	1.002(3)	0.994(8)	0.994(8)			
$\ell \bar{\ell} \ell' \bar{\ell}'$	0.1395(2)	0.1393(2)	0.000583(2)	0.1400(3)	1.002(2)	1.001(2)	1.001(2)			

Cross sections for $qq (\to H) \to ZZ \to \ell \bar{\ell} \ell \bar{\ell}$ and $\ell \bar{\ell} \ell' \bar{\ell'}$ in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ for $M_H = 125 \,\text{GeV}$ and $\Gamma_H = 0.004434 \,\text{GeV}$ calculated at LO with gg2VV. The zerowidth approximation (ZWA) and off-shell Higgs cross sections, the continuum cross section and the sum of off-shell Higgs and continuum cross sections including interference are given. The accuracy of the ZWA and the impact of off-shell effects are assessed with
$$\begin{split} R_0 &= \sigma_{H,\text{ZWA}}/\sigma_{H,\text{offshell}}. \text{ Interference effects are illustrated through } R_1 &= \sigma(|\mathcal{M}_H + \mathcal{M}_{\text{cont}}|^2)/\sigma(|\mathcal{M}_H|^2 + |\mathcal{M}_{\text{cont}}|^2) \text{ and } R_2 &= \sigma(|\mathcal{M}_H|^2 + 2\operatorname{Re}(\mathcal{M}_H\mathcal{M}^*_{\text{cont}}))/\sigma(|\mathcal{M}_H|^2). \end{split}$$
 γ^* contributions are included in \mathcal{M}_{cont} . Applied cuts: $|M_{ZZ} - M_H| < 1 \text{ GeV}|, p_{T\ell} > 1$ $5 \,{
m GeV}, \, |\eta_\ell| < 2.5, \, \Delta R_{\ell\ell} > 0.1, \, 76 \,{
m GeV} < M_{\ell \bar{\ell}, 12} < 106 \,{
m GeV} \,{
m and} \, 15 \,{
m GeV} < M_{\ell \bar{\ell}, 34} < 100 \,{
m GeV}$ $115 \,\text{GeV}, M_{\ell\bar{\ell}} > 4 \,\text{GeV}$. The invariant mass of the same-flavour, opposite-sign lepton pair closest to M_Z is denoted by $M_{\ell\bar{\ell},12}$. $M_{\ell\bar{\ell},34}$ denotes the invariant mass of the remaining lepton pair. Cross sections are given for a single lepton flavour combination. No flavour summation is carried out for charged leptons or neutrinos. The integration error is given in brackets.

A B F A B F

 $gg \to H \to ZZ \to \ell\ell\nu_\ell\bar{\nu}_\ell$ at $M_H = 200 \,\text{GeV}$

- $M_H > 2 M_Z$ (Higgs resonance in region with large continuum background)
- $\Gamma_H / M_H = 0.7\%$
- M_{T3} (unlike M_{T1}, see below) does not have a kinematic edge at M_{H*}
- significant constructive signal-background interference occurs

	$gg (\rightarrow H) -$	$\rightarrow ZZ \rightarrow \ell \bar{\ell} \nu_{\mu}$				
σ [fb]	$, pp, \sqrt{s} = 8$	TeV, $M_H = 1$	ZWA	interference		
H _{ZWA}	H_{offshell}	cont	$ H_{\rm ofs}$ +cont $ ^2$	R_0	R_1	R_2
2.0357(8)	2.0608(9)	1.1888(6)	3.380(2)	0.9878(6)	1.0400(7)	1.063(1)

Cross sections for $gg (\rightarrow H) \rightarrow ZZ \rightarrow \ell \bar{\ell} \nu_{\ell} \bar{\nu}_{\ell}$ for $M_H = 200 \,\text{GeV}$ and $\Gamma_H = 1.428 \,\text{GeV}$. Applied cuts: $p_{T\ell} > 20 \,\text{GeV}$, $|\eta_{\ell}| < 2.5$, $76 \,\text{GeV} < M_{\ell\ell} < 106 \,\text{GeV}$, $p_T > 10 \,\text{GeV}$, $\Delta \phi_{\ell\ell} > 1$.

$$\begin{split} \text{CMS:} \ M_{T3} &= \sqrt{\left(M_{T,\ell\ell} + M_T\right)^2 - (\mathbf{p}_{T,\ell\ell} + \mathbf{p}_T)^2} \\ \text{with} \quad M_{T,\ell\ell} &= \sqrt{p_{T,\ell\ell}^2 + M_{\ell\ell}^2} \quad \text{and} \quad M_T = \sqrt{\mathbf{p}_T^2 + M_{\ell\ell}^2} \end{split}$$

ATLAS uses M_{T3} with $M_{\ell\ell} \to M_Z$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Applied cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, 76 \text{ GeV} < M_{\ell \ell} < 106 \text{ GeV}, p_T > 10 \text{ GeV}, \Delta \phi_{\ell \ell} > 1$

Applied cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, 76 \text{ GeV} < M_{\ell\ell} < 106 \text{ GeV}, p_T > 10 \text{ GeV}, \Delta \phi_{\ell\ell} > 1$

Applied cuts: $p_{T\ell} > 20 \,\text{GeV}, |\eta_{\ell}| < 2.5, 76 \,\text{GeV} < M_{\ell\ell} < 106 \,\text{GeV}, p_T' > 10 \,\text{GeV}, \Delta \phi_{\ell\ell} > 1$

Applied cuts: $p_{T\ell} > 20 \,\text{GeV}, |\eta_\ell| < 2.5, 76 \,\text{GeV} < M_{\ell\ell} < 106 \,\text{GeV}, p_T > 10 \,\text{GeV}, \Delta \phi_{\ell\ell} > 1$

 $gg \to H \to ZZ \to \ell\ell\nu_\ell\bar{\nu}_\ell$ at $M_H = 125\,\text{GeV}$

- no experimental studies of this channel at $M_H = 125 \,\text{GeV}$ yet
- off-shell enhancement of tail is stronger for ZZ than WW
- $M_{ZZ} > 180 \text{ GeV} = M_H + 12000 \Gamma_H$: 37% of off-shell signal (p/_ cut dependent)
- ZWA inappropriate, large interference
- significant mitigation if $M_{T1} < M_H$ cut is applied

		$gg (\rightarrow H)$ –	$\rightarrow ZZ \rightarrow \ell \overline{\ell} \iota$]			
	σ [fb], $pp, \sqrt{s} = 8$	$3 \text{ TeV}, M_H =$	ZWA	interfe	rence	
M_T cut	H _{ZWA}	Hoffshell	cont	$ H_{ofs}+cont ^2$	R_0	R_1	R_2
none	0.1593(2)	0.2571(2)	1.5631(7)	1.6376(9)	0.6196(7)	0.8997(6)	0.290(5)
$M_{T1} < M_H$	0.1593(2)	0.1625(2)	0.4197(5)	0.5663(6)	0.980(2)	0.973(2)	0.902(5)

Cross sections for $gg (\rightarrow H) \rightarrow ZZ \rightarrow \ell \bar{\ell} \nu_\ell \bar{\nu}_\ell$ for $M_H = 125 \, {\rm GeV}$ without and with transverse mass cut. Applied cuts: $p_{T\ell} > 20 \, {\rm GeV}, \ |\eta_\ell| < 2.5, 76 \, {\rm GeV} < M_{\ell\ell} < 106 \, {\rm GeV}, \ p_T > 10 \, {\rm GeV}.$

$$M_{T1} = \sqrt{(M_{T,\ell\ell} + \not\!\!\! p_T)^2 - (\mathbf{p}_{T,\ell\ell} + \not\!\!\! p_T)^2}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Applied cuts: $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, 76 \text{ GeV} < M_{\ell \ell} < 106 \text{ GeV}, p_T > 10 \text{ GeV}$

Applied cuts: $p_{T\ell} > 20 \,\text{GeV}, |\eta_\ell| < 2.5, 76 \,\text{GeV} < M_{\ell\ell} < 106 \,\text{GeV}, p_T > 10 \,\text{GeV}$

N. Kauer $gg \rightarrow ZZ$ Higgs-continuum interference and zero-width approximation failure HP2@MPI September 6, 2012 22 / 26

Applied cuts: $p_{T\ell} > 20 \,\text{GeV}, \, |\eta_\ell| < 2.5, \, 76 \,\text{GeV} < M_{\ell\ell} < 106 \,\text{GeV}, \, \not\!\!\!\!/_T > 10 \,\text{GeV}$

Signal-background interference for $M_H = 400 \text{ GeV}$ $gg (\rightarrow H) \rightarrow ZZ \rightarrow l\bar{l}l'\bar{l'}$

Settings and cuts:

 $\label{eq:masses} \begin{array}{l} \mu_R=\mu_F=M_H/2=200 \mbox{ GeV}, \Gamma_H=29.16 \mbox{ GeV} \mbox{ (HDECAY)} \\ \mbox{MSTW2008LO, other: LHC Higgs Cross Section WG, arXiv:1101.0593} \\ \mbox{[hep-ph], App. A (with NLO Γ_V and G_μ scheme)} \end{array}$

ZZ standard cuts:

 $p_{T\ell} > 20 \text{ GeV}, |\eta_{\ell}| < 2.5, \quad 76 \text{ GeV} < M_{\ell \bar{\ell}}, M_{\ell' \bar{\ell}'} < 106 \text{ GeV}$

ZZ Higgs search cuts: standard cuts and $|M_{l\bar{l}l'l\bar{l'}} - M_H| < \Gamma_H$

		σ [fb], $pp, \sqrt{s} = 7$ TeV, $M_H = 400$ GeV			interference	
process	cuts	$ \mathcal{M}_H ^2$	$ \mathcal{M}_{\text{cont}} ^2$	$ \mathcal{M}_H + \mathcal{M}_{cont} ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	stand.	0.3654(4)	0.3450(4)	0.7012(8)	0.987(2)	0.975(3)
$gg\;(\to H)\to ZZ$	Higgs	0.2729(3)	0.01085(2)	0.2867(3)	1.010(2)	1.011(2)
		σ [fb], pp ,	$\sqrt{s}=14~{\rm TeV}$	interference		
process	cuts	$ \mathcal{M}_H ^2$	$ \mathcal{M}_{\text{cont}} ^2$	$ \mathcal{M}_H + \mathcal{M}_{cont} ^2$	R_1	R_2
$gg (\rightarrow H) \rightarrow ZZ$	stand.	1.893(3)	1.417(2)	3.205(5)	0.969(2)	0.945(3)
$gg (\rightarrow H) \rightarrow ZZ$	Higgs	1.377(2)	0.0531(1)	1.445(2)	1.011(2)	1.011(3)

similar interference effects in 4I and 2I2v channels and for $M_H = 500$ GeV, $\sqrt{s} = 8$ TeV

Signal-background interference for $M_H = 400 \text{ GeV}$ Differential results

 $gg \ (\rightarrow H) \rightarrow ZZ \rightarrow l\bar{l}l'\bar{l'}$, LHC, 7 TeV, standard cuts

 $M_{l\bar{l}l'\bar{l'}}$ [GeV] (left) and $\Delta\phi_{l\bar{l}}$ [°] (right) distributions [fb/[o]]

Summary

- $M_H \approx 125$ GeV: ZWA expected to be excellent ($\Gamma_H/M_H \approx 3 \cdot 10^{-5}$)
- But: M_H dependence of Higgs decay rates \rightarrow off-shell cross sections essential to reach 1% precision level
- ZWA: O(10%) corrections for inclusive gg → H → VV (due to sizeable Higgs signal from region with invariant mass above 2M_V)
- $\mathcal{O}(5\text{--}10\%)$ signal-background interference effects for $gg \to H \to VV$
- Experimental selection cuts (e.g. on M_T) allow to eliminate/mitigate effects
- Experiments: check where ZWA is used explicitly/implicitly
- · Higgs couplings extraction: take into account effects as extra uncertainty
- Weak boson fusion Higgs production channels similarly affected
- Tools: gg2VV allows to simulate interference and off-shell effects

伺 とく ヨ とく ヨ と