Weak Vector Boson Production with Jets at the LHC

Precise Predictions with BlackHat

Fernando Febres Cordero

Simon Bolivar University, Caracas

In collaboration with: Z. Bern, G. Diana, L.J. Dixon, S. Höche, H. Ita, D.A. Kosower, D. Maître and K. Ozeren

HP2: High Precision for Hard Processes

Max Planck Institute for Physics, Munich, September 6th, 2012

Vector Boson + Jets with BH

WEAK BOSONS AND JETS

V's at the LHC, 2,3,4 Jets, V+jets, LH Wishlist

NLO QCD CORRECTIONS FOR V+JETS

Multi leg results, BlackHat+SHERPA, V+1,2,3,4 Jets, NTUPLES

EXPERIMENTAL RESULTS

CMS polarization, ATLAS W/Z plus many Jets

Drell-Yan Precision

→ Inclusive NNLO QCD corrections
 know for some time
 → Fully exclusive NNLO QCD results
 available
 → NLO Electroweak and QED
 corrections
 → Very recent NNLO QCD + NLO EW

corrections

 $\rightarrow \dots$

All this leaves the theory uncertainty for Drell-Yan observables at the few percent level! Hamberg, van Neerven, Matsuura (1991)

See for example: Gavin, Li, Petriello, Quackenbush (2012) ; Catani, Cieri, Ferrera, de Florian, Grazzini (2009)

See for example: Baur, Keller, Wackeroth (1999) ; Dittmaier, Kramer (2002) ; Calame, Montagna, Nicrosini (2006)

See: Li and Petriello arXiv:1208.5967

Jets

• Definition of complex objects

IR Safe Jet Algorithms

In the past, performance of implementations of IR safe jet algorithms, kept them away from practical use at hadron colliders: for example with the "standard" N³ scaling of the kt algorithm, or the naive 2^{N} of seedless cone algorithms

Great progress in recent years:

- •Sequential recombination algorithms as kt / Cambrige-Aachen / anti-kt [4 have been implemented with h *N ln (N)* scaling
- •A seedless infrared safe cone algorithm, SISCone, has appeared with N² In (N) scaling

[Cacciari, Salam hep-ph/0512210]

[Salam, Soyez arXiv:0704.0292]

Available within FastJet http://fastjet.fr

Some typical event multiplicities at colliders:

Type of event	N
e^+e^- event on the Z peak	50
Tevatron ($\sqrt{s} = 1.96$ TeV) dijet event	200
LHC ($\sqrt{s} = 14 \text{ TeV}$) dijet event	500
LHC low-luminosity event (5 pileup collisions)	1000
LHC high-luminosity event (20 pileup collisions)	4000
RHIC Au Au event ($\sqrt{s} = 200 \text{ GeV/nucleon}$)	3000
LHC Pb Pb event ($\sqrt{s} = 5.5 \text{ TeV/nucleon}$)	30000

[Salam arXiv:0906.1833]

The need of IR safety

→ IRC unsafety makes data / pertubative calculation comparison hard (if at all meaningful)
 → Indeed, quantum corrections become useless for large enough multiplicity!

Observable	1st miss cones at	Last meaningful order
Inclusive jet cross section	NNLO	NLO
W/Z/H + 1 jet cross section	NNLO	NLO
3 jet cross section	NLO	LO
W/Z/H + 2 jet cross section	NLO	LO
jet masses in 3 jets, $W/Z/H + 2$ jets	LO	none

Testing IR safety of some commonly used cone algorithms

Both ATLAS and CMS use IR safe algorithms in their analyses!

QCD CORRECTIONS TO JET PRODUCTION

Inclusive and Two Jet Production

First single-jet inclusive NLO QCD calculations performed in the early 90's

S.D. Ellis, Z. Kunszt and D.E. Soper 1990 & 1992

Fully exclusive NLO QCD results two-jet production, compared to CDF data

W.T. Giele, E.W.N. Glover and D.A. Kosower 1993 & 1994

Results implemented into the MC program JETRAD

http://vircol.fnal.gov/MCdownload/jetrad.html

3-Jet Production (NLOJet++)

→ It would take about ten years to obtains first NLO QCD results to 3-Jet production

→ Kilgore and Giele present complete results in 2000

→ Nagy also obtains result in
 2001(2003) and releases NLOJET++
 → One of the most complex 2 → 3 NLO
 QCD calculations

Results implemented into the C++ program NLOJET++

http://www.desy.de/~znagy/Site/NLOJet++.html

Code employed by multiple analyses of Tevatron and LHC collaborations!

4-Jet Production @ NLO (BlackHat+SHERPA)

Bern, Diana, Dixon, FFC, Hoeche, Kosower, Ita, Maitre, Ozeren [arXiv:1112.3940]

Automated Calculation (On-Shell Techniques) of Loop ME's and Real Pieces (CS Dipoles)

no. jets	ATLAS	LO	ME+PS	NLO	NP factor	NLO+NP
≥ 2	$620 \pm 1.3^{+110}_{-66} \pm 24$	$958(1)^{+316}_{-221}$	559(5)	$1193(3)^{+130}_{-135}$	0.95(0.02)	$1130(19)^{+124}_{-129}$
≥ 3	$43 \pm 0.13^{+12}_{-6.2} \pm 1.7$	$93.4(0.1)^{+50.4}_{-30.3}$	39.7(0.9)	$54.5(0.5)^{+2.2}_{-19.9}$	0.92(0.04)	$50.2(2.1)^{+2.0}_{-18.3}$
≥ 4	$4.3 \pm 0.04^{+1.4}_{-0.79} \pm 0.24$	$9.98(0.01)^{+7.40}_{-3.95}$	3.97(0.08)	$5.54(0.12)^{+0.08}_{-2.44}$	0.92(0.05)	$5.11(0.29)^{+0.08}_{-2.32}$

→ Ten more years to obtain first NLO QCD results for 4-Jet Production

- \rightarrow Computed by the BlackHat Collaboration
- \rightarrow Postdictions and Predictions for an ATLAS setup
- → Single framework for several multiplicities
- \rightarrow One of the most complex 2 \rightarrow 4 NLO QCD calculations

Calculation reproduced very recently by Badger, Biedermann, Uwer and Yudin **[arXiv:1209.0098]**

4-Jet Production @ NLO (BlackHat+SHERPA)

Bern, Diana, Dixon, FFC, Hoeche, Kosower, Ita, Maitre, Ozeren [arXiv:1112.3940]

→ Fourth Jet p_T spectrum
 → NLO corrections large
 (reducing NLO cross section)
 → Comparison to ATLAS 2.4
 pb⁻¹ data shows good
 agreement
 → Relatively small (~10%)
 non-perturbative corrections

COMBINING V'S AND JETS A IMPORTANT SIGNAL

V + Jets at NLO for SUSY Searches

Must Match Experimental Needs!

An experimenter's wishlist Hadron collider cross-sections one would like to know at NLO Run II Monte Carlo Workshop, April 2001 Single boson Diboson Triboson Heavy flavour $W + \leq 5j$ $WW + \leq 5j$ $WWW + \leq 3j$ $t\bar{t} + \leq 3j$ $W + bb + \leq 3j$ $WW + b\overline{b} + \leq 3j$ $WWW + b\overline{b} + \leq 3j$ $t\overline{t} + \gamma + \leq 2j$ $W + c\bar{c} + \leq 3j \quad WW + c\bar{c} + \leq 3j \quad WWW + \gamma\gamma + \leq 3j \quad t\bar{t} + W + \leq 2j$ $t\bar{t} + Z + \leq 2j$ $Z + \leq 5j$ $ZZ + \leq 5j$ $Z\gamma\gamma + \leq 3j$ $Z + bb + \leq 3j$ $ZZ + bb + \leq 3j$ $WZZ + \leq 3j$ $t\bar{t} + H + \leq 2j$ $ZZZ + \leq 3i$ $tb + \leq 2j$ $Z + c\overline{c} + \leq 3j$ $ZZ + c\overline{c} + \leq 3j$ $\gamma + \leq 5j$ $\gamma \gamma + \leq 5j$ $bb + \leq 3j$ $\gamma + b\bar{b} + \leq 3j$ $\gamma\gamma + b\bar{b} + \leq 3j$ **First entry filled by** $\gamma + c\bar{c} + \leq 3j$ $\gamma\gamma + c\bar{c} + \leq 3j$ $WZ + \leq 5j$ BlackHat+SHERPA $WZ + bb + \leq 3j$ calculation (See K. $WZ + c\bar{c} + \leq 3j$ $W\gamma + \leq 3j$ **Ozeren's Talk!**) $Z\gamma + \leq 3j$

Campbell

WEAK BOSONS AND JETS

V's at the LHC, 2,3,4 Jets, V+jets, LH Wishlist

NLO QCD CORRECTIONS FOR V+JETS

Multi leg results, BlackHat+SHERPA, V+1,2,3,4 Jets, NTUPLES

EXPERIMENTAL RESULTS

CMS polarization, ATLAS W/Z plus many Jets

BlackHat 2009

Berger, Bern, Dixon, FFC, Forde, Gleisberg, Ita, Kosower, Maitre

BlackHat 2011

Bern, Diana, Dixon, FFC, Forde, Höche, Ita, Kosower, Maitre, Ozeren

NLO with BlackHat+SHERPA

2 → 4 Processes

- pp → W + 3 Jets [2009]
- pp → Z + 3 Jets [2010]
- pp → 4 Jets [2011]
- $2 \rightarrow 5$ Processes

- pp → W + 4 Jets [2010] *(leading color)*
- pp \rightarrow Z + 4 Jets [2011] (leading color)
- pp → W + 4 Jets [Ita and Ozeren, 2011] (full color)
- $2 \rightarrow 6$ Processes (PRELIMINARY)
 - pp → W + 5 Jets [2012] (leading color) See K. Ozeren's talk!

NLO with BlackHat+SHERPA

High level of automation and optimization for pure QCD and V+Jet processes

Loop amplitudes based on Generalized Unitarity

NLO Success Describing W+jets Data

Tevatron: W + n jets Data. (CDF, arXiv:0711.4044)

data from $320pb^{-1}$

NLO:

MCFM; parton level; including Bern, Dixon, Kosower and Weinzierl W+2 1-loop matrix elements; Full NLO by Campbell and Ellis. LO matched to parton shower:

- •MLM-model: Alpgen+Herwig.
- •SMPR-model: Madgraph+Pythia

QCD corrections to W+3 Jets at the Tevatron

[Berger, Bern, Dixon, Forde, FFC, Gleisberg, Ita, Kosower, Maître arXiv:0902.2760; arXiv:0907.1984]

Vector Boson + Jets with BH

Compare Two Scale Choices

Message: Do not use $\mu = E_T^W$

- LO/NLO ratio sensible.
- NLO scale dependence very good.

Polarization In An Odd Place

Polarization In An Odd Place

Leptonic E_T in W + 3 jets at LHC

[Berger, et al arXiv:0907.1984]

 $-W^+/W^-$ transverse lepton ratios trace a remarkably large left-handed W polarization at large $p_{\tau}(W)$

- independent of number of jets
- stable under QCD corrections
- will be useful to separate W + n jets from top, maybe also
 from new physics
 BlackHat: [arXiv:1103.5445]

Actual W polarization

Detailed Studies of Distributions and Ratios

no. jets	Z LO	Z NLO	Z/W^+ LO	Z/W^+ NLO	Zn/(n-1) LO	Zn/(n-1) NLO
0	$323.1(0.1)^{+39.3}_{-44.3}$	$428.6(0.3)^{+6.2}_{-4.1}$	0.1209(0.0001)	0.1306(0.0003)		
1	$66.69(0.04)^{+5.59}_{-5.30}$	$82.1(0.1)^{+3.3}_{-2.6}$	0.1674(0.0002)	0.166(0.001)	0.2064(0.0001)	0.1915(0.0004)
2	$19.10(0.02)^{+5.32}_{-3.82}$	$20.25(0.07)^{+0.31}_{-1.02}$	0.1636(0.0003)	0.166(0.002)	0.2864(0.0003)	0.247(0.001)
3	$4.76(0.01)^{+2.18}_{-1.35}$	$4.73(0.03)^{+0.05}_{-0.35}$	0.1634(0.0004)	0.169(0.002)	0.2494(0.0004)	0.234(0.002)
4	$1.116(0.002)^{+0.695}_{-0.390}$	$1.06(0.01)^{+0.05}_{-0.14}$	0.1618(0.0003)	0.172(0.002)	0.2343(0.0005)	0.223(0.002)

9/6/2012

200

000

Sharing Complex Calculations

- → High Precision for Hard Processes calculations are most valuable if made available to larger ex/ph/th community
- → Many codes, like MCFM, exist that provide direct access to ME's and integration tools for variety of observables
- → Although efficiency of modern NLO codes for large multiplicities has greatly improved over the last few years, still very computer intensive
- \rightarrow A solution: Store as many information as possible from your calculation, *the ntuple way...*

BlackHat+SHERPA NTUPLES

- Files containing
 - Kinematic Information
 - Information needed to change factorization and renormalization scales and PDFs
 - Information for multiple jet algorithms (different R's, f-parameters, etc)
- Publically available
 - C++ library to read and handle them
- •W/Z+0,1,2,3,4(,5) jets at the LHC
 - Already used by LHC's collaborations!

WEAK BOSONS AND JETS

V's at the LHC, 2,3,4 Jets, V+jets, LH Wishlist

NLO QCD CORRECTIONS FOR V+JETS

Multi leg results, BlackHat+SHERPA, V+1,2,3,4 Jets, NTUPLES

EXPERIMENTAL RESULTS

CMS polarization, ATLAS W/Z plus many Jets

CMS W POLARIZATION MEASUREMENT

arXiv:1104.3829 [hep-ex]

Polarized W's at CMS

9/6/2012

Z+JETS AT ATLAS: TOTAL XS & DISTRIBUTIONS

arXiv:1111.2690 [hep-ex]

→ In arXiv:1111.2690 [hep-ex] ATLAS presented a thorough study of associated Z and Jet production at 7 TeV
 → Employs 36 pb⁻¹ of data collected in 2010
 → Data shown including up to four jets
 → Comparisons to NLO QCD results with BlackHat+SHERPA Ntuples and with the MC generators SHERPA / ALPGEN / Pythia

 \rightarrow Both electron and muon decay channels analyzed

Kinematical cuts:anti-
$$k_t$$
 jets, R = 0.4, $p_T^{jet} > 30$ GeV, $|y^{jet}| < 4.4$

- \rightarrow 36 pb⁻¹
- → Inclusive cross section for each multiplicity
- →Good agreement with NLO results
- → Four Jet bin error expected to be halved with more statistics
- \rightarrow Electron channel shown

 \rightarrow 36 pb⁻¹

 \rightarrow R separation between

- leading p_T jets
- → Good shape predictions from theory (except for Pythia)

 \rightarrow Electron channel shown

arXiv:1111.2690 [hep-ex]

FINAL ANALYSES AT THE TEVATRON

Final Data Sets from the Tevatron

- → Both D0 and CDF are preparing final V+jets analysis with all data collected until September 2011 → D0 already have shown preliminary results for W+1,2,3,4 Jets production with 3.8 fb⁻¹ of data → CDF have shown also preliminary results Z+1,2,3 Jets with a 9.44 fb⁻¹ data set → BlackHat+SHERPA have provided parton level NLO QCD corrections for comparisons
- \rightarrow We look forward to final and complete studies

Outlook

- We showed first results for 4 Jet Production at NLO QCD using BlackHat+SHERPA
- We showed results for V+1,2,3,4 Jets at NLO QCD, including results for polarizations of W bosons
- Good agreement is found with ATLAS / CMS / CDF / D0 data! Giving confidence in new measurements and searches to come
- Both ATLAS and CMS are now using BlackHat's Ntuples as an efficient way to directly access complex NLO results
- → Recent advancements make now feasible the access to automated NLO showers through standard software frameworks of the main experimental collaborations

The New NLO Standard!

NLO Montecarlo for Standard Experimental Analyses...

Backup slides....

 $W^{+/-}$ + n jets: Neutrino E_{τ}

NLO LO

BlackHat: [arXiv:1103.5445]

Effect independent of multiplicity! Almost no difference from NLO and LO!

Similarly for charged lepton E_{T}