Numerical Evaluation of Multi-loop Integrals

Sophia Borowka

In collaboration with G. Heinrich

Based on arXiv:1204.4152 [hep-ph]

HP⁸:Workshop on High Precision for Hard Processes, Munich September 5th, 2012

http://secdec.hepforge.org

The LHC Era has begun

- We are probing energies which have never been reached at colliders before
- High experimental precision is possible due to high luminosities
- Highly precise theoretical predictions are necessary

New particle consistent with the Higgs found

Announcement of a new particle finding on July 4th 2012

At NLO: lot of progress (multi-leg, automation,...)

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult
 - Analytic methods to calculate e.g. two-loop integrals involving massive particles reach their limit

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult
 - Analytic methods to calculate e.g. two-loop integrals involving massive particles reach their limit
 - Numerical methods are in general easier to automate, problems mainly are
 - Extraction of IR and UV singularities
 - Numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - Speed/accuracy

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult
 - Analytic methods to calculate e.g. two-loop integrals involving massive particles reach their limit
 - Numerical methods are in general easier to automate, problems mainly are
 - Extraction of IR and UV singularities (solved with SecDec 1.0)
 - Numerical convergence in the presence of integrable singularities (e.g. thresholds)
 - Speed/accuracy

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult
 - Analytic methods to calculate e.g. two-loop integrals involving massive particles reach their limit
 - Numerical methods are in general easier to automate, problems mainly are
 - Extraction of IR and UV singularities (solved with SecDec 1.0)
 - Numerical convergence in the presence of integrable singularities (e.g. thresholds) (solved with SecDec 2.0)
 - Speed/accuracy

- At NLO: lot of progress (multi-leg, automation,...)
- Beyond NLO: calculations progressing well, but automation is difficult
 - Analytic methods to calculate e.g. two-loop integrals involving massive particles reach their limit
 - Numerical methods are in general easier to automate, problems mainly are
 - Extraction of IR and UV singularities (solved with SecDec 1.0)
 - Numerical convergence in the presence of integrable singularities (e.g. thresholds) (solved with SecDec 2.0)
 - Speed/accuracy

Many people are/have been working on PURELY numerical methods, e.g. Soper/Nagy et al., Binoth/Heinrich et al., Kurihara et al., Passarino et al., Lazopoulos et al., Anastasiou et al., Freitas et al., Weinzierl et al., ...

Public Implementations of the Sector Decomposition Method on the Market

- sector_decomposition (uses GiNaC) C. Bogner & S. Weinzierl '07
- FIESTA (uses Mathematica, C) A. Smirnov, V. Smirnov & M. Tentyukov '08 '09
- SecDec (uses Mathematica, Perl, Fortran/C++) J. Carter & G. Heinrich '10

Limitation until recently:

Multi-scale integrals were limited to the Euclidean region (i.e., no thresholds)

Public Implementations of the Sector Decomposition Method on the Market

- sector_decomposition (uses GiNaC) C. Bogner & S. Weinzierl '07
- FIESTA (uses Mathematica, C) A. Smirnov, V. Smirnov & M. Tentyukov '08 '09
- SecDec (uses Mathematica, Perl, Fortran/C++) J. Carter & G. Heinrich '10

Limitation until recently:

Multi-scale integrals were limited to the Euclidean region (i.e., no thresholds)

NOW:

Extension of SecDec to general kinematics! SB, J. Carter & G. Heinrich '12

SecDec 2.0 Computes ...

 Feynman graphs for arbitrary kinematics, and more general parametric functions with no poles within the integration region

Feynman graph or parametric function

Parametric Functions

- A general parametric function can be
 - a phase space integral where IR divergences are regulated dimensionally
 - polynomial functions, e.g. hypergeometric functions
 pF{p-1}(a₁,..., a_p; b₁,..., b_{p-1}; β)

Operational Sequence of the SecDec Program

< 17 > <

글 > - < 글 >

General Feynman Integral

- Graph infos are converted into (scalar or contracted tensor)
 Feynman integral in D dimensions at L loops with N propagators to power v_i of rank R
- After loop momentum integration, generic scalar Feynman integral reads

$$G = \frac{(-1)^{N_{\nu}}}{\prod_{j=1}^{N} \Gamma(\nu_j)} \Gamma(N_{\nu} - LD/2) \int_{0}^{\infty} \prod_{j=1}^{N} dx_j \ x_j^{\nu_j - 1} \delta(1 - \sum_{l=1}^{N} x_l) \frac{\mathcal{U}^{N_{\nu} - (L+1)D/2}(\vec{x})}{\mathcal{F}^{N_{\nu} - LD/2}(\vec{x})}$$

where $N_{\nu} = \sum_{j=1}^{N} \nu_j$ and where \mathcal{U} and \mathcal{F} can be constructed via **topological cuts**

Operational Sequence of the SecDec Program

Sector Decomposition

Overlapping divergences are factorized

Iterated sector decomposition is done, where dimensionally regulated soft, collinear and UV singularities are factored out Hepp '66, Denner & Roth '96, Binoth & Heinrich '00

Operational Sequence of the SecDec Program

< 4 1 → <

Contour Deformation I

• For kinematics in the physical region, \mathcal{F} can still vanish

$$\mathcal{F}_{Bubble} = -s t_1(1-t_1) + m^2 - i\delta$$

but a deformation of the integration contour

and Cauchy's theorem can help

$$\oint_c f(t) dt = \int_0^1 f(t) dt + \int_1^0 \frac{\partial z(t)}{\partial t} f(z(t)) dt = 0$$

Contour Deformation II

The integration contour is deformed by

$$ec{t}
ightarrow ec{z} = ec{t} + iec{y}$$
 ,
 $y_j(ec{t}) = -\lambda t_j (1 - t_j) rac{\partial \mathcal{F}(ec{t})}{\partial t_j}$ Soper '99

Integrand is analytically continued into the complex plane

$$\mathcal{F}(\vec{t}) \rightarrow \mathcal{F}(\vec{t} + i\vec{y}(\vec{t})) = \mathcal{F}(\vec{t}) + i\sum_{j} y_{j}(\vec{t}) \frac{\partial \mathcal{F}(\vec{t})}{\partial t_{j}} + \mathcal{O}(y(\vec{t})^{2})$$

Soper, Nagy, Binoth; Kurihara et al., Anastasiou et al., Freitas et al., Becker et al.

Find the Optimal Deformation Parameter λ I

Robust method: check the maximally allowed λ for *F* and maximize the modulus at critical points

robust method default: smalldefs=0, largedefs=0

Find the Optimal Deformation Parameter λ II

▶ Faster convergence: minimize the complex argument of *F*

Singular points lie far from endpoints (0 and 1) of integration region, use *smalldefs=1*

Operational Sequence of the SecDec Program

< 日 > < 同 > < 三 > < 三 >

Subtraction, Expansion, Numerical Integration

Subtraction

► The factorized poles in a subsector integrand *I* ∝ *U*, *F* are extracted by subtraction (e.g. logarithmic divergence)

$$\int_0^1 \mathrm{d}t_j t_j^{-1-b_j\epsilon} \mathcal{I}(t_j,\epsilon) = -\frac{\mathcal{I}(0,\epsilon)}{b_j\epsilon} + \int_0^1 \mathrm{d}t_j t_j^{-1-b_j\epsilon} (\mathcal{I}(t_j,\epsilon) - \mathcal{I}(0,\epsilon))$$

Expansion

 \blacktriangleright After the extraction of poles, an expansion in the regulator ϵ is done

Numerical Integration

 Monte Carlo integrator programs containted in CUBA library or BASES can be used for numerical integration

```
Hahn et al. '04 '11, Kawabata '95
```

Operational Sequence of the SecDec Program

Results

- Successful application of SecDec 1.0 to massless multi-loop diagrams up to 5-loop 2-point functions and 4-loop 3-point functions for Euclidean kinematics
- Successful application of the public SecDec 2.0 to various multi-scale examples, e.g., the massive 2-loop vertex graph, planar and non-planar 6- and 7-propagator massive 2-loop box diagrams
- Timings for the 2-loop vertex diagram and a relative accuracy of 1% using the CUBA 3.0 library on an Intel(R) Core i7 CPU at 2.67GHz

s/m^2	timing (finite part)
3.9	9.5 secs
14.0	3.6 secs

Results II: Massive Two-loop Vertex Graph G

Results III: Massive Non-planar 6-propagator Graph

S. Borowka (MPI for Physics) Numerical evaluation of multi-loop integrals

Results IV: Non-planar Massive Two-loop Box

Results V: Non-planar ggtt Contribution

Install SecDec 2.0

Download:

http://secdec.hepforge.org

Install:

tar xzvf SecDec.tar.gz cd SecDec-2.0 ./install

Prerequisites:

Mathematica (version 6 or above), Perl, Fortran and/or C++ compiler

User Input I

param.input: parameters for integrand specification and numerical integration

subdirectory for the mathematica output files (will be created if non-existent) : # if not specified, a directory with the name of the graph given below will be created by default subdir=2100p #----# if outputdir is not specified: default directory for # the output will have integral name (given below) appended to directory above. # otherwise specify full path for Mathematica output files here outputdir= #----# graphname (can contain underscores, numbers, but should not contain commas) graph=P126 #----# number of propagators: propagators=6 #-----# number of external legs: leas=3 # number of loops: loops=2 #----# construct integrand (F and U) via topological cuts (only possible for scalar integrals) # default is 0 (no cut construction used) cutconstruct=1 # parameters for subtractions and epsilon expansion ******

User Input II

 template.m: definition of the integrand (Mathematica syntax)


```
proplist={{ms[1], {3, 4}}, {ms[1], {4, 5}}, {ms[1], {5, 3}},
    \{0, \{1, 2\}\}, \{0, \{1, 4\}\}, \{0, \{2, 5\}\}\};
(*
momlist={k1,k2};
proplist={k1^2-ms[1].(k1+p3)^2-ms[1].(k1-k2)^2-ms[1].
   (k2+p3)^2.(k2+p1+p3)^2.k2^2);
numerator={1};
*)
powerlist=Table[1,{i.Length[proplist]}];
onshell={ssp[1]->0,ssp[2]->0,ssp[3]->sp[1,2],sp[1,3]->0,sp[2,3]->0};
Dim=4-2*eps:
```

Program Test Run

./launch -p param.input -t template.m

```
********** This is SecDec version 2.0 **********
Authors: Sophia Borowka, Jonathon Carter, Gudrun Heinrich
graph = P126
primary sectors 1,2,3,4,5,6, will be calculated
calculating F and U . . .
done
written to /home/pcl335a/sborowka/Work/SecDecBeta/loop/2loop/P126/FUN.m
results of the decomposition will be written to
/home/pcl335a/sborowka/Work/SecDecBeta/loop/2loop/P126
doing sector decomposition . . .
done
working on pole structure: 2 logarithmic poles. 0 linear poles. 0 higher poles
C++ functions created for pole structure 210h0
compiling 210h0/epstothe0 ...
doing numerical integrations in P126/210h0/epstothe0
compiling 210h0/epstothe-1 ...
doing numerical integrations in P126/2l0h0/epstothe-1
compiling 210h0/epstothe-2 ...
doing numerical integrations in P126/2l0h0/epstothe-2
working on pole structure: 1 logarithmic pole. 0 linear poles. 0 higher poles
C++ functions created for pole structure 110h0
compiling 110h0/epstothe0 ...
doing numerical integrations in P126/110h0/epstothe0
compiling 110h0/epstothe-1 ...
doing numerical integrations in P126/110h0/epstothe-1
working on pole structure: 0 logarithmic poles. 0 linear poles. 0 higher poles
C++ functions created for pole structure 010h0
compiling 110h0/epstothe0 ...
doing numerical integrations in P126/010h0/epstothe0
Output written to /home/pcl335a/sborowka/Work/SecDecBeta/loop/2loop/P126/P126 pfull.res
```

Get the Result

resultfile P126_full.res

	OUTPUT: P126 p5 ********** point: 7.0 ext. legs: 0.0 0.0 7.0 prop. mass: 1.0 0. 0. 0. 0. 0. Prefactor=-Exp[-2EulerGamma*eps] ******** eps^-2 coeff ******			
	result	=0.07563683 +0.1003924148 T		
	error	=0.000493522517701388		
		+ 0.00139691015080074 I		
	CPUtime (all	eps^-2 subfunctions) =0.04		
CPUtime (longest eps^-2 subfunction) =0.01				
	***** eps^0	coeff *****		
	result	=0.906978296750816		
	error	-0.900701331012044 1		
	critor	+ 0.0442867373250588 I		
	CPUtime (all	eps^0 subfunctions) =2.44		
	CPUtime (longest eps^0 subfunction) =0.51			
	******	*******		
	Time taken fo	or decomposition = 2.005725		
	Total time for Time taken for	or subtraction and eps expansion = 41.5057 secs or longest subtraction and eps expansion = 17.8613	secs	

< 日 > < 同 > < 三 > < 三 >

э

Conclusion

Summary

- With SecDec the numerical evaluation of multi-loop integrals is possible for arbitrary kinematics
- SecDec can also be used for more general parametric functions (e.g. phase space integrals)
- Useful to check analytic results for multi-loop master integrals, e.g. 2-loop boxes, 3-loop form factors, ...

Outlook

- Implement contour deformation for more general parametric functions
- Implement further variable transformation to tackle singularities very close to pinch singularities
- Application to 2-loop processes involving several mass scales, e.g. QCD/EW/MSSM corrections