Parton shower matching and multijet merging at NLO

Marek Schönherr

Institute for Particle Physics Phenomenology

HP2, 05/09/2012

arXiv:1111.1220, arXiv:1201.5882 arXiv:1207.5030, arXiv:1207.5031 arXiv:1208.2815

LHCphenOnet

Marek Schönherr

Parton shower matching and multijet merging at NLO

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event MEPs (CKKW), Mc@NLO, MENLOPS, MEPS@NLO

 \rightarrow full analytic control mandatory for consistency/accuracy

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044 COMIX JHEP12(2008)039 CS subtraction EPJC53(2008)501
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018

Sherpa's traditional strength is the perturbative part of the event MEPS (CKKW), Mc@NLO, MENLOPS, MEPS@NLO

 \rightarrow full analytic control mandatory for consistency/accuracy

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\begin{split} \langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \bigg[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \bigg] \\ &+ \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R) \end{split}$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

- NLO weighted Born configuration $\bar{\rm B}^{(\text{A})}={\rm B}+\tilde{\rm V}+{\rm I}+\int{\rm d}\Phi_1[{\rm D}^{(\text{A})}-{\rm D}^{(\text{S})}]$
- use ${
 m D}_i^{(*)}$ as resummation kernels $\Delta^{({\sf A})}(t,t')=\exp\left[\int_t^t {
 m d}\Phi_1 {
 m D}^{({\sf A})}/{
 m B}
 ight]$
- resummation phase space limited by $\mu_O^2 = t_{\sf max}$
 - ightarrow starting scale of parton shower evolution
 - ightarrow should be of the order of the hard resummation scale
 - \Rightarrow first implementation to allow to study μ_O uncertainty

Mc@NLO

Frixione, Webber JHEP06(2002)029

$$\begin{split} \langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} &= \int \mathrm{d}\Phi_B \; \bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \right. \\ &+ \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \; \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right] \\ &+ \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R) \end{split}$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

- NLO weighted Born configuration $\bar{B}^{(A)} = B + \tilde{V} + I + \int d\Phi_1 [D^{(A)} D^{(S)}]$ • use $D_i^{(A)}$ as resummation kernels $\Delta^{(A)}(t, t') = \exp \left[\int_t^{t'} d\Phi_1 D^{(A)}/B\right]$
- resummation phase space limited by $\mu_Q^2 = t_{\text{max}}$

-

- \rightarrow starting scale of parton shower evolution
- \rightarrow should be of the order of the hard resummation scale
- \Rightarrow first implementation to allow to study μ_Q uncertainty

Marek Schönherr

Parton shower matching and multijet merging at NLO

Mc@Nlo

Frixione, Webber JHEP06(2002)029

$$\langle O \rangle^{\mathsf{NLO}+\mathsf{PS}} = \int \mathrm{d}\Phi_B \,\bar{\mathrm{B}}^{(\mathsf{A})}(\Phi_B) \left[\Delta^{(\mathsf{A})}(t_0, \mu_Q^2) \, O(\Phi_B) \right. \\ \left. + \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \, \frac{\mathrm{D}^{(\mathsf{A})}(\Phi_B, \Phi_1)}{\mathrm{B}(\Phi_B)} \, \Delta^{(\mathsf{A})}(t, \mu_Q^2) \, O(\Phi_R) \right] \\ \left. + \int \mathrm{d}\Phi_R \Big[\mathrm{R}(\Phi_R) - \sum_i \mathrm{D}_i^{(\mathsf{A})}(\Phi_R) \Big] \, O(\Phi_R)$$

Höche, Krauss, MS, Siegert arXiv:1111.1220

every term is well defined and NLO and NLL accuracy maintained if:

-

- $D^{(A)} = \sum_{i} D_{i}^{(A)}$ is full colour correct in soft limit
- $D^{(A)} = \sum_i D_i^{(A)}$ contains all spin correlations in collinear limit
- $D_i^{(A)}$ and $D_i^{(S)}$ have identical parton maps

 \Rightarrow conventional parton showers need to be improved for that

e.g. choose $D_i^{(A)} = D_i^{(S)}$ up to phase space constraints

Marek Schönherr

3

Describe wealth of experimental data with a single sample (LHC@7TeV) MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_\perp$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation fully hadronised including MPI
- virtual MEs from BLACKHAT Giele, Glover, Kosower Nucl.Phys.B403(1993)633-670

Bern et.al. arXiv:1112.3940

• $p_{\perp}^{j_1}>20~{\rm GeV},~p_{\perp}^{j_2}>10~{\rm GeV}$

Uncertainty estimates:

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{R/F}^{\mathsf{def}}$
- $\bullet \ \mu_Q \in [\tfrac{1}{\sqrt{2}}, \sqrt{2}] \, \mu_Q^{\mathsf{def}}$
- MPI activity in tr. region $\pm~10\%$

Describe wealth of experimental data with a single sample (LHC@7TeV) MC@NLO di-jet production:

- $\mu_{R/F} = \frac{1}{4} H_T$, $\mu_Q = \frac{1}{2} p_{\perp}$
- CT10 PDF ($\alpha_s(m_Z) = 0.118$)
- hadron level calculation fully hadronised including MPI
- virtual MEs from BLACKHAT Giele, Glover, Kosower Nucl.Phys.B403(1993)633-670

Bern et.al. arXiv:1112.3940

• $p_{\perp}^{j_1}>20~{\rm GeV},~p_{\perp}^{j_2}>10~{\rm GeV}$

Uncertainty estimates:

- $\mu_{R/F} \in [\frac{1}{2},2]\,\mu_{R/F}^{\mathsf{def}}$
- $\mu_Q \in [\frac{1}{\sqrt{2}}, \sqrt{2}]\, \mu_Q^{\mathsf{def}}$
- MPI activity in tr. region $\pm~10\%$

Marek Schönherr

5

Höche, MS arXiv:1208.2815

3-jet-over-2-jet ratio

- determined from incl. sample
 2-jet rate at NLO+NLL
 3-jet rate at LO+LL
- common scale choices \rightarrow varied simultaneously
- at large H_T large MPI uncertainties
 - \rightarrow better MPI physics needed (soft QCD)
- similar description of related ATLAS observables

Try different scale

- $\mu_{R/F} = \frac{1}{4} H_T^{(y)}$ with $H_T^{(y)} = \sum_{i \in jets} p_{\perp,i} e^{0.3|y_{boost} - y_i|}$ with $y_{boost} = 1/n_{jets} \sum_{i \in jets} y_i$
- reduces to $\mu_{R/F} = \frac{1}{2} p_{\perp} e^{0.3y^*}$ with $y^* = \frac{1}{2} |y_1 - y_2|$ for $2 \rightarrow 2$ and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

• better description of data at large rapidities, as expected

description of most other ables worsened

need proper description of forward physics (e.g. (B)FKL)

Höche, MS arXiv:1208.2815

Try different scale

- $\mu_{R/F} = \frac{1}{4} H_T^{(y)}$ with $H_T^{(y)} = \sum_{i \in jets} p_{\perp,i} e^{0.3|y_{boost} - y_i|}$ with $y_{boost} = 1/n_{jets} \sum_{i \in jets} y_i$
- reduces to $\mu_{R/F} = \frac{1}{2} p_{\perp} e^{0.3y^*}$ with $y^* = \frac{1}{2} |y_1 - y_2|$ for $2 \rightarrow 2$ and captures real emission dynamics

Ellis, Kunszt, Soper PRD40(1989)2188

 better description of data at large rapidities, as expected

description of most other observables worsened

need proper description of forward physics (e.g. (B)FKL)

- small- Δy region \Rightarrow small uncertainty on additional jet production
- large- Δy region \Rightarrow all uncertainties sizable
- small- \bar{p}_{\perp} region \Rightarrow dominated by perturbative uncertainties
- small-p

 _⊥ region
 ⇒ non-perturbative
 uncertainties as large as
 perturbative uncertainties

Reduction of theoretical uncertainty necessitates better understanding of soft QCD and nonfactorisable contributions

Höche, MS arXiv:1208.2815

Forward energy flow

- energy flow in rapidity interval per event with a central back-to-back di-jet pair
- normalisation reduces $\mu_{R/F}$ and μ_Q dependence
- dominated by MPI modeling uncertainty

LO merging:

- LO accuracy for $n \leq n_{\max}$ -jet processes
- preserve LL accuracy of the parton shower

Catani, Krauss, Kuhn, Webber JHEP11(2001)063 Lönnblad JHEP05(2002)046 Höche, Krauss, Schumann, Siegert JHEP05(2009)053 Hamilton, Richardson, Tully JHEP11(2009)038 Lönnblad, Prestel JHEP03(2012)019

NLO merging:

- NLO accuracy for $n \leq n_{\max}$ -jet processes
- preserve LL accuracy of the parton shower

Lavesson, Lönnblad JHEP12(2008)070

Höche, Krauss, MS, Siegert arXiv:1207.5030

Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031

Häcks Knows MC Classest avViv 1007 E020

NLO merging

NLO merging

Höche, Krauss, MS, Siegert arXiv:1207.5030 $\langle O \rangle^{\mathsf{MEPs@Nlo}}$ Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031 $= \int \mathrm{d}\Phi_n \,\bar{\mathrm{B}}_n^{(\mathsf{A})} \left| \Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) \,O_n \right|$ + $\int_{L}^{\mu_Q^2} \mathrm{d}\Phi_1 \frac{\mathrm{D}_n^{(\mathsf{A})}}{\mathrm{B}_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) O_{n+1}$ + $\int \mathrm{d}\Phi_{n+1} \left[\mathrm{R}_n - \mathrm{D}_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q)$ \triangle (PS) (a_{n+1} (b_{n+1}) O_{n+1}

NLO merging

Höche, Krauss, MS, Siegert arXiv:1207.5030 $\langle O \rangle^{\mathsf{MEPs@Nlo}}$ Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031 $= \int \mathrm{d}\Phi_n \,\bar{\mathrm{B}}_n^{(\mathsf{A})} \left| \Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) \,O_n \right|$ + $\int_{L}^{\mu_Q^2} \mathrm{d}\Phi_1 \frac{\mathrm{D}_n^{(\mathsf{A})}}{\mathrm{B}_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) O_{n+1}$ + $\int \mathrm{d}\Phi_{n+1} \left[\mathrm{R}_n - \mathrm{D}_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q) \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) O_{n+1}$

12

Höche Krauss MS Siggert arXiv:1207 5030

NLO merging

$$\begin{split} \langle O \rangle^{\mathsf{MEPS@NLO}} & \text{Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031} \\ &= \int \mathrm{d}\Phi_n \ \bar{\mathrm{B}}_n^{(\mathsf{A})} \left[\Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) O_n \\ &\quad + \int_{t_0}^{\mu_Q^2} \mathrm{d}\Phi_1 \ \frac{\mathrm{D}_n^{(\mathsf{A})}}{\mathrm{B}_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) \ O_{n+1} \right] \\ &\quad + \int \mathrm{d}\Phi_{n+1} \left[\mathrm{R}_n - \mathrm{D}_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q) \ \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \ O_{n+1} \\ &\quad + \int \mathrm{d}\Phi_{n+1} \ \bar{\mathrm{B}}_{n+1}^{(\mathsf{A})} \\ &\quad \times \left[\Delta_{n+1}^{(\mathsf{A})}(t_0, t_{n+1}) \ O_{n+1} + \int_{t_0}^{t_{n+1}} \mathrm{d}\Phi_1 \ \frac{\mathrm{D}_{n+1}^{(\mathsf{A})}}{\mathrm{B}_{n+1}} \ \Delta_{n+1}^{(\mathsf{A})}(t_{n+2}, t_{n+1}) \ O_{n+2} \right] \\ &\quad + \int \mathrm{d}\Phi_{n+2} \Big[\mathrm{R}_{n+1} - \mathrm{D}_{n+1}^{(\mathsf{A})} \Big] \end{split}$$

Höche Krauss MS Siggert arXiv:1207 5030

NLO merging

$$\begin{split} O \rangle^{\mathsf{MEPS@NLO}} & \text{Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031} \\ &= \int d\Phi_n \ \bar{B}_n^{(\mathsf{A})} \left[\Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) O_n \\ &+ \int_{t_0}^{\mu_Q^2} d\Phi_1 \ \frac{D_n^{(\mathsf{A})}}{B_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) \ O_{n+1} \right] \\ &+ \int d\Phi_{n+1} \left[R_n - D_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q) \ \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \ O_{n+1} \\ &+ \int d\Phi_{n+1} \ \bar{B}_{n+1}^{(\mathsf{A})} \\ &\times \left[\Delta_{n+1}^{(\mathsf{A})}(t_0, t_{n+1}) \ O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \ \frac{D_{n+1}^{(\mathsf{A})}}{B_{n+1}} \ \Delta_{n+1}^{(\mathsf{A})}(t_{n+2}, t_{n+1}) \ O_{n+2} \right] \\ &+ \int d\Phi_{n+2} \Big[R_{n+1} - D_{n+1}^{(\mathsf{A})} \Big] \end{split}$$

Höche Krauss MS Siggert arXiv:1207 5030

NLO merging

$$\begin{split} O \rangle^{\mathsf{MEPS@NLO}} & \text{Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031} \\ &= \int d\Phi_n \ \bar{B}_n^{(\mathsf{A})} \left[\Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) O_n \\ &\quad + \int_{t_0}^{\mu_Q^2} d\Phi_1 \ \frac{\mathrm{D}_n^{(\mathsf{A})}}{\mathrm{B}_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) \ O_{n+1} \right] \\ &+ \int d\Phi_{n+1} \left[\mathrm{R}_n - \mathrm{D}_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q) \ \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \ O_{n+1} \\ &+ \int d\Phi_{n+1} \ \bar{B}_{n+1}^{(\mathsf{A})} \\ &\times \left[\Delta_{n+1}^{(\mathsf{A})}(t_0, t_{n+1}) \ O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \ \frac{\mathrm{D}_{n+1}^{(\mathsf{A})}}{\mathrm{B}_{n+1}} \Delta_{n+1}^{(\mathsf{A})}(t_{n+2}, t_{n+1}) \ O_{n+2} \right] \\ &+ \int d\Phi_{n+2} \Big[\mathrm{R}_{n+1} - \mathrm{D}_{n+1}^{(\mathsf{A})} \Big] \ \Delta_{n+1}^{(\mathsf{PS})}(t_{n+2}, t_{n+1}) \ \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \ \Theta(Q - Q_{\mathsf{cut}}) \ O_{n+2} \end{split}$$

Häcks Knows MC Classest avViv 1007 E020

NLO merging

$$\begin{split} O \rangle^{\mathsf{MEPS@NLO}} & \text{Gehrmann, Höche, Krauss, MS, Siegert arXiv:1207.5031} \\ &= \int d\Phi_n \ \bar{B}_n^{(\mathsf{A})} \left[\Delta_n^{(\mathsf{A})}(t_0, \mu_Q^2) O_n \\ &\quad + \int_{t_0}^{\mu_Q^2} d\Phi_1 \ \frac{D_n^{(\mathsf{A})}}{B_n} \Delta_n^{(\mathsf{A})}(t_{n+1}, \mu_Q^2) \Theta(Q_{\mathsf{cut}} - Q) O_{n+1} \right] \\ &\quad + \int d\Phi_{n+1} \left[R_n - D_n^{(\mathsf{A})} \right] \Theta(Q_{\mathsf{cut}} - Q) \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) O_{n+1} \\ &\quad + \int d\Phi_{n+1} \ \bar{B}_{n+1}^{(\mathsf{A})} \left[1 + \frac{B_{n+1}}{\bar{B}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} d\Phi_1 \ \mathbf{K}_n \right] \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\mathsf{cut}}) \\ &\quad \times \left[\Delta_{n+1}^{(\mathsf{A})}(t_0, t_{n+1}) O_{n+1} + \int_{t_0}^{t_{n+1}} d\Phi_1 \ \frac{D_{n+1}^{(\mathsf{A})}}{B_{n+1}} \Delta_{n+1}^{(\mathsf{A})}(t_{n+2}, t_{n+1}) O_{n+2} \right] \\ &\quad + \int d\Phi_{n+2} \Big[R_{n+1} - D_{n+1}^{(\mathsf{A})} \Big] \Delta_{n+1}^{(\mathsf{PS})}(t_{n+2}, t_{n+1}) \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2) \Theta(Q - Q_{\mathsf{cut}}) O_{n+2} \\ \end{split}$$

NLO merging – Generation of MC counterterm

$$\left[1 + \frac{\mathbf{B}_{n+1}}{\bar{\mathbf{B}}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} \mathrm{d}\Phi_1 \,\mathbf{K}_n\right]$$

- same form as exponent of Sudakov form factor $\Delta_n^{(\mathsf{PS})}(t_{n+1},\mu_Q^2)$
- truncated parton shower on $n\mbox{-}{\rm parton}$ configuration underlying $n+1\mbox{-}{\rm parton}$ event
 - 1 no emission \rightarrow retain n + 1-parton event as is
 - 2 first emission at t' with $Q > Q_{cut}$, multiply event weight with $B_{n+1}/\bar{B}_{n+1}^{(A)}$, restart evolution at t', do not apply emission kinematics
 - 3 treat every subsequent emission as in standard truncated vetoed shower
- generates

$$\left[1 + \frac{\mathbf{B}_{n+1}}{\overline{\mathbf{B}}_{n+1}} \int_{t_{n+1}}^{\mu_Q^2} \mathrm{d}\Phi_1 \,\mathbf{K}_n\right] \Delta_n^{(\mathsf{PS})}(t_{n+1}, \mu_Q^2)$$

 \Rightarrow identify $\mathcal{O}(lpha_s)$ counterterm with the emitted emission

Renormalisation scales:

- determined by clustering using PS probabilities and taking the respective nodal values t_i

$$\alpha_s(\mu_R^2)^k = \prod_{i=1}^k \alpha_s(t_i)$$

- change of scales $\mu_R \rightarrow \tilde{\mu}_R$ in MEs necessitates one-loop counter term

$$\alpha_s(\tilde{\mu}_R^2)^k \left(1 - \frac{\alpha_s(\tilde{\mu}_R^2)}{2\pi} \beta_0 \sum_{i=1}^k \ln \frac{t_i}{\tilde{\mu}_R^2}\right)$$

Factorisation scale:

- μ_F determined from core *n*-jet process
- change of scales $\mu_F \to \tilde{\mu}_F$ in MEs necessitates one-loop counter term

$$B_n(\Phi_n) \frac{\alpha_s(\tilde{\mu}_R^2)}{2\pi} \log \frac{\mu_F^2}{\tilde{\mu}_F^2} \left(\sum_{c=q,g}^n \int_{x_a}^1 \frac{\mathrm{d}z}{z} P_{ac}(z) f_c(x_a/z, \tilde{\mu}_F^2) + \dots \right)$$

Marek Schönherr

14

Results: $e^+e^- \rightarrow hadrons$

 $ee \rightarrow hadrons$ (2,3,4 @ NLO; 5,6 @ LO)

10 11

 $-\ln(y_{34})$

12

 $-\ln(y_{56})$

13

Jet resolutions (Durham measure)

- MEPs@NL0 vs
 MENL0Ps
- at y ≪ 1 dominated by hadr. effects → needs retuning
- much improved ren. scale dependence

ALEPH data EPJC35(2004)457-486

IPPP Durham

Results: $e^+e^- \rightarrow hadrons$

ALEPH data EPJC35(2004)457-486

Results: $\mathbf{pp} \rightarrow \mathbf{W} + \mathbf{jets}$

 $pp \rightarrow W+$ jets (0,1,2 @ NLO; 3,4 @ LO)

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{\mathrm{def}}$ scale uncertainty much reduced
- NLO dependece for $pp \rightarrow W+0,1,2$ jets LO dependence for $pp \rightarrow W+3,4$ jets

•
$$Q_{\mathsf{cut}} = 30 \; \mathsf{GeV}$$

.

good data description

ATLAS data Phys.Rev.D85(2012)092002

Results: $\mathbf{pp} \rightarrow \mathbf{W} + \mathbf{jets}$

 $pp \rightarrow W+jets (0,1,2 @ NLO; 3,4 @ LO)$

- $\mu_{R/F} \in [\frac{1}{2}, 2] \, \mu_{\mathrm{def}}$ scale uncertainty much reduced
- NLO dependece for $pp \rightarrow W+0,1,2$ jets LO dependence for $pp \rightarrow W+3,4$ jets

•
$$Q_{\mathsf{cut}} = 30 \; \mathsf{GeV}$$

good data description

ATLAS data Phys.Rev.D85(2012)092002

Results: $\mathbf{pp} \rightarrow \mathbf{W} + \mathbf{jets}$

ATLAS data Phys.Rev.D85(2012)092002

Conclusions

- SHERPA's MC@NLO formulation allows full evaluation of perturbative uncertainties (μ_F , μ_R , μ_Q)
- Mc@NLO can be easily combined with MEPs \rightarrow MENLOPs
- MC@NLO is a necessary input for NLO merging \rightarrow MEPS@NLO
- MEPs@NLO gives full benefits of NLO calculations (scale dependences, normalisations) while also retaining full (N)LL accuracy of parton shower
- \Rightarrow will be included in next major release

Current release: SHERPA-1.4.1

http://sherpa.hepforge.org

• better description of perturbative QCD is only part of the story to achieve higher precission for (hard) collider observables

IPPP Durham

Thank you for your attention!

Marek Schönherr Parton shower matching and multijet merging at NLO

Marek Schönherr

21

Marek Schönherr

22

