

ALICÉ

Latest LHC Results

Mike Flowerdew MPP München

222.2222

Typical low β^* collision with 20 reconstructed primary vertices

- 2012: instantaneous luminosity up to ~7.5×10³³ cm⁻² s⁻¹
 - Peak average interactions per crossing: 35
 - Reduced for ALICE, LHCb
 - Serious challenges with pile-up

STANDARD MODEL

Standard Model overview

- Standard Model studies fall into a few main categories
 - Jets/QCD
 - Electroweak bosons
 - B-physics
 - Top physics
 - Heavy Ions

Literally hundreds of interesting results exist, just a handful of the most recent will be shown

Electroweak bosons

 $\Delta\sigma_{WZ}^{fid}/\sigma_{WZ}^{fid}$

0.6

0.5

0.4

0.3

0.2

0.

ATLAS

 $L dt = 4.6 \text{ fb}^{-1}$

Data 2011 (vs = 7 TeV)

- W,Z still a workhorse of SM physics
 - PDFs, HO QCD, electroweak parameters, model tuning
- WW, WZ, ZZ are irreducible background for many searches
 - Precise cross sections measured at sqrt(s) = 7 and 8 TeV
 - Uncertainty ~10-15%, testing NLO precision
 - Limits on triple gauge couplings

Michael Flowerdew (MPP München)

Monte Carlo (MC@NLO)

Total Uncertainty

WZ cross section

arXiv:1208.1390,

submitted to EPI

Data

Top mass: LHC combination

• 2010 and 2011 results combined

ATLAS-CONF-2012-095 CMS-PAS-TOP-12-001

- Up to ~60% correlations between measurements, nontrivial combination
- Total uncertainty 1.4 GeV, approaching Tevatron
- Main systematics: b-jet energy scale, ISR/FSR corrections, color reconnection, UE, JES

Top differential cross section

- Differential mass, p_T and rapidity of di-top system
- Typical uncertainty: 10-20%
- Compares well to NLO and NLO+NNLL (m_{tt}) predictions

arXiv:1207.5644,

4th September 2012

before collision

after collision

arXiv:1208.2826 (CMS, submitted to PRL) Sequential suppression of bound Y states observed, sensitive to

Next HI run: Jan-Feb 2013 with p+Pb 4th September 2012

OGP

Michael Flowerdew (MPP München)

Heavy Ions

arXiv:1208.1967 (ATLAS, submitted to PLB) First measurement of inclusive jet suppression

arXiv:1208.2711 (ALICE, submitted to PLB): 0.15-50 GeV EPJC 72 (2012) 1945 (CMS): 1-100 GeV

Charged particle suppression at high p_T constrains models of parton energy loss

ALICE: J/ψ elliptical flow agrees with transport models including regeneration

STANDARD MODEL HIGGS SEARCHES

Standard Model Higgs overview

- Critical part of the Standard Model, one of the principle targets of the LHC
- Multi-channel discovery strategy covers the full mass range
 - Utilise varied production and decay mechanisms

SM Higgs search overview

Channel		CMS	ATLAS	T
$H \rightarrow \gamma \gamma$		2011, 2012	2011, 2012	Key channels
$H \rightarrow ZZ$	$\rightarrow 4\ell$	2011, 2012	2011, 2012	
	$\rightarrow \ell\ell_{\rm VV}$	-	2011	PLB 716 (2012) 1-29
	$\rightarrow \ell \ell q q$	-	2011	(ATLAS) PLB 716 (2012) 30-61
H→WW	$\rightarrow \ell_{\rm V}\ell_{\rm V}$	2011, 2012	2011, 2012 (eµ)	(CMS)
	$\rightarrow \ell_{V} q q$	-	2011	
$H \rightarrow \tau \tau$		2011, 2012 (<i>l</i> µ, <i>l</i> h)	2011 (<i>ll, l</i> h, hh)	
ZH (H → bb)	$Z \rightarrow vv$	2011, 2012	2011	
	$Z \to \ell \ell$	2011, 2012	2011	
WH (H \rightarrow bb)	$W \to \ell_V$	2011, 2012	2011	
	$(\ell = e_{\mu})$			

Full CMS combination (with 2011-only channels): CMS-PAS-HIG-12-020

4th September 2012

- 2012 analyses optimised for pileup
 - Multiple sub-channels improve sensitivity
 - Dedicated methods for finding the primary vertex
- ATLAS: 10 categories
 - 1 dijet VBF channel, 9 more binned in conv x $|\eta_{\gamma}|$ x p_{Tt}
- CMS: Boosted Decision Tree tags events
 - 4 bins in output + VBF
- Clear evidence for a new boson resonance
 - CMS: 4.1σ excess (local, 2.8σ expected)
 - ATLAS: 4.5σ excess (local, 2.5σ expected)

$H \to ZZ(^*) \to 4\ell$

- Background mostly irreducible ZZ(*)/γ*
- CMS: ML fit using kinematic discriminant and $m_{4\ell}$ in 6 subchannels
 - (4e, 2e2 μ , 4 μ) x (7 TeV, 8 TeV)
- ATLAS: ML fit of $m_{4\ell}$ spectrum in 8 sub-channels
 - (4e, 2e2µ, 2µ2e, 4µ) x (7 TeV, 8 TeV)

• Both experiments observe an excess inconsistent with the expected background, in the vicinity of 125 GeV

ATLAS: 3.6σ (local, 2.7σ expected) **CMS: 3.2σ** (local, 3.8σ expected)

4th September 2012

$H \to WW \to \ell_V \ell_V$

- Two leptons + MET*: pileup treatment is critical $*E_{T,rel}^{miss} = E_T^{miss} * sin(min{\Delta\phi(E_T^{miss}, obj), \frac{\pi}{2}})$
- ATLAS: Fit to transverse mass in jet multiplicity bins (0j, 1j), VBF analysis (≥2j)
- CMS: Channels separated by flavour (*U*, *U*') and jet multiplicity (0j, 1j, 2j)
 - BDT in 2011 data for 0j, 1j analyses

- Excesses seen in both analyses at $m_{\rm H} \sim 125~GeV$
 - ATLAS: 2.8σ (local, 2.3σ expected)
 - CMS: 1.6σ (local, 2.4σ expected)

Combined results

•SM Higgs boson excluded (95% CL) at low masses, except in one narrow mass window

	ATLAS	CMS		
Expected	110-582 GeV	117-~600GeV		
Observed	111-122, 131-559 GeV	110-121.5, 128-600 GeV		
xcluded ranges (95% CL, CL_s prescription)				

Observed excess

- A new boson resonance has been discovered
 - Local significance: **5.9σ** (ATLAS), **5.0σ** (CMS)
 - Expected for SM Higgs: 4.9σ and 5.8σ respectively
- $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ contribute most to local excess
 - H→WW also important for ATLAS result

• Mass is fitted leaving branching fractions unconstrained:

ATLAS: m_{χ} = **126.0** ± 0.4 (stat) ± 0.4 (syst) GeV CMS: m_{χ} = **125.3** ± 0.4 (stat) ± 0.5 (syst) GeV

4th September 2012

Non-SM Higgs searches

ATLAS-CONF-2012-079 $H \rightarrow aa \rightarrow 4\gamma$ search (a = light CP-odd scalar)

CMS-PAS-HIG-12-026, -027 (not shown)

SUPERSYMMETRY

What are we searching for?

Minimal supersymmetry adds >100 parameters to the Standard Model (even more if you violate R-parity)

Constrained GUT-scale models (top-down)

- Uses some high-scale assumptions to reduce parameter space
 - Famous examples: Constrained MSSM/ mSUGRA, GMSB, AMSB
- Sparticle mass/coupling relationships restricted by construction
- Many have trouble reconciling a 125 GeV Higgs

Simplified models (bottomup) + variations

- One or a couple of production/decay processes
 - Remains agnostic as to other sparticle content
- Main result: a cross section (xBR) limit
 Transferable between models
- Naturally leads to signature-based searches

• Several analyses have good sensitivity for natural squarks and gluinos

ATLAS	CMS
2-6 jet + MET	>=3 jet + MET
6-9 jet + MET	$\alpha_{\rm T}$ (anti-QCD)
significance	M _{T2}

• Limits weaken if LSP is too massive: significant effort into improving sensitivity here

3rd generation: gluino-mediated

- $pp \rightarrow \tilde{g}\tilde{g}; \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_1^0$ or $b\bar{b}\tilde{\chi}_1^0$ via real or virtual squarks
 - 4 top/bottom quarks, top is the main background
 - Main signatures: multiple b-jets, same sign dileptons

See also: CMS-PAS-SUS-11-022

4th September 2012

Electroweak SUSY production

- If strong SUSY is at high mass, we can independently find weakly interacting sparticles
- Decays via slepton or W/Z ideal for >=2 lepton searches
 - 2 leptons: Four signal regions (m_{T2}, 2jet, OSjveto, SSjveto). Top, WW and fake leptons all important
 - >= 3 leptons: Z veto or Z requirement. WZ largest background, then reducible top and Z+jets
 - Complementary, orthogonal analyses
- CMS results soon in CMS-PAS-SUS-12-006

arXiv:1208.2884, arXiv:1208.3144, both sumbitted to PLB

Other SUSY signatures

- What if we have it all wrong, and the LSP is not stable? Or the NLSP is longlived?
 - Cannot rely on missing energy: Detect decay of LSP or (meta-)stable particles

Aka non-SUSY BSM

EXOTICS

ATLAS exotics searches

CMS: Black holes

- Large particle multiplicities, large S_T
 - S_T = scalar object p_T sum
- S_T shape found in 2-3 object events
- No significant deviations up to $N_{obj} \ge 8$
 - Limits of M(BH) \sim 5-6 TeV, depending on n_{dim} and gravitational radiation _
 - Results largely insensitive to remnant/no remnant
- See also: ATLAS-CONF-2012-038 (BH→jj)

2000

≥105 ອີ

Events / 100 (0

10

10²

10

Dark Matter searches

CMS-EXO-11-059

(submitted to JHEP) ATLAS-CONF-2012-085

ATLAS general search

- Did we miss some channel we never thought of?
- 655 exclusive search channels
 - Multiplicities of e, μ , γ , j, b, ν (MET)
- Look for deviations in M_{eff} for each class

 M_{eff} = scalar object p_T sum
- P-value distribution shows no hint of new physics

FINAL REMARKS

2-7

4th September 2012

Conclusion

- This has been a lighting tour of recent LHC results
 - Mostly released in the last two months
 - Even then, only a small fraction of all results have been shown
- The flood will not stop: with up to 20 fb⁻¹ or more at $\sqrt{s} = 8$ TeV plus p+Pb runs, expect exciting new results for many months to come
- The new resonance (Higgs?) will certainly keep many busy for a long time yet
 - Measuring its properties
 - Impact on non-SM searches?
- Non-SM physics is proving hard to find!
 - Masses of new data and energy upgrade in 2013 will surely help

Thank you all for listening!

BACKUP

4th September 2012

the second second second

- ATLAS
- Pixel, strip and straw tube tracking
- LAr and scintillating tile calorimetry
- Drift tube precision muon chambers
- Three-level trigger
- Magnetic field: Solenoid for tracking, toroid for muon spectrometer

Two designs with common goals: •Higgs •Physics beyond the Standard Model •SM precision measurements •Heavy Ion physics

4th September 2012

voke in muon system

Pixel and strip tracking Lead tungstate and brass/

scintillator calorimetry

muon chambers

• Two(?) level trigger

• Drift tube and CSC precision

Magnetic field: solenoid in tracking and calo, return

• CMS

4th September 2012

