Higher order QCD corrections for associated VH production at hadron colliders

Giancarlo Ferrera
giancarlo.ferrera@mi.infn.it

Università di Milano

HP2 – Munich – Sept. 4th 2012

In collaboration with: M. Grazzini & F. Tramontano
Outline

1. Associated VH production at hadron colliders
2. q_T-subtraction formalism at NNLO
3. Associated VH production at NNLO: numerical results
4. Conclusions
Motivations

Associated vector boson Higgs (VH) production (with $H \rightarrow b \bar{b}$ and $V \rightarrow l_1 l_2$ decay) is an important mechanism for discovery and study the properties of the Higgs boson.

- At the LHC it is important channel through boosted analysis with jet reconstruction and decomposition techniques [Butterworth et al. (’08)].
- At the Tevatron is the main search channel in the low Higgs mass region.

To get closer to SM VH sensitivity with the LHC 2012 data, precise theoretical predictions needed \implies computation of higher-order QCD corrections.
Associated \(VH \) production

\[
\begin{align*}
 h_1(p_1) + h_2(p_2) & \rightarrow V + H + X \rightarrow \ell_1 \ell_2 + b \bar{b} + X \\
 \text{where} & \quad V = Z^0, W^\pm \quad \text{and} \quad \ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu_{\ell}
\end{align*}
\]

According to the QCD factorization theorem:

\[
d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \ f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \ d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).
\]

\[
d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) = d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_S(\mu_R^2) d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_S^2(\mu_R^2) d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_F^2, \mu_R^2) + \mathcal{O}(\alpha_S^3).
\]

In the following we do not consider QCD corrections to \(H \rightarrow b \bar{b} \) decay.
Associated VH production

$$h_1(p_1) + h_2(p_2) \rightarrow V + H + X \rightarrow \ell_1 \ell_2 + b\bar{b} + X$$

where $V = Z^0, W^\pm$ and $\ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu_\ell$

According to the QCD factorization theorem:

$$d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \ f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \ d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).$$

$$d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) = d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_S(\mu_R^2) d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_S^2(\mu_R^2) d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_R^2, \mu_F^2) + O(\alpha_S^3).$$

In the following we do not consider QCD corrections to $H \rightarrow b\bar{b}$ decay.
Associated \(VH \) production

\[
 h_1(p_1) + h_2(p_2) \rightarrow V + H + X \rightarrow \ell_1 \ell_2 + b\bar{b} + X
\]

where \(V = Z^0, W^\pm \) and \(\ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu \ell \)

According to the QCD factorization theorem:

\[
 d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \ f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) \ d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).
\]

\[
 d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) = d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_S(\mu_R^2) \ d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2)
\]

\[
 + \alpha_S^2(\mu_R^2) \ d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_F^2, \mu_R^2) + O(\alpha_S^3).
\]

In the following we do not consider QCD corrections to \(H \rightarrow b\bar{b} \) decay.
Associated VH production: total cross section

- **NNLO QCD corrections for WH are basically the same of DY ($\sim 1\text{-}3\%$ at the LHC) [Van Neerven et al. (’91), Brein, Harlander, Djouadi (’00)] → $vh@nnlo$.**

- For ZH, $gg \to HZ$ top-loop $\sim g^2\lambda_t^2\alpha_s^2$ (non DY-like) corrections ($+5\%$ at the LHC) [Kniehl (’90)] [Brein, Harlander, Djouadi (’00)] → $vh@nnlo$.

- **NNLO top-mediated contributions $\sim g^3\lambda_t\alpha_s^2$ to WH and ZH ($\sim 1\text{-}2\%$ at the LHC) recently computed:** [Brein, Harlander, Wiesemann, Zirke (’11)].

- **NLO EW corrections ($\sim 5\text{-}10\%$) [Ciccolini, Dittmaier, Krämer (’03)] [Denner, Dittmaier, Kallweit, Mück (’11)]**
Associated VH production:

- **total cross section**

- **NNLO QCD corrections for WH are basically the same of DY ($\sim 1-3\%$ at the LHC)** [Van Neerven et al.('91)], [Brein, Harlander, Djouadi('00)] \rightarrow vh@nnlo.

- **For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) corrections ($+5\%$ at the LHC)** [Kniehl('90)] [Brein, Harlander, Djouadi('00)] \rightarrow vh@nnlo.

- **NNLO top-mediated contributions $\sim g^3 \lambda_t \alpha_s^2$ to WH and ZH ($\sim 1-2\%$ at the LHC)** recently computed: [Brein, Harlander, Wiesemann, Zirke('11)].

- **NLO EW corrections ($\sim 5-10\%$)** [Ciccolini, Dittmaier, Krämer('03)] [Denner, Dittmaier, Kallweit, Mück('11)]
Associated VH production: total cross section

- NNLO QCD corrections for WH are basically the same of DY (~ 1-3% at the LHC) \cite{VanNeerven:1991,Li:2000} \rightarrow $vh@nnlo$.

- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections ($+5\%$ at the LHC) \cite{Kniehl:1990,Li:2000} \rightarrow $vh@nnlo$.

- NNLO top-mediated contributions $\sim g^3 \lambda_t \alpha_S^2$ to WH and ZH (~ 1-2% at the LHC) recently computed: \cite{Brein:2011}.

- NLO EW corrections (~ 5-10%) \cite{Ciccolini:2003,Denner:2011}.
Associated VH production: total cross section

- NNLO QCD corrections for WH are basically the same as DY ($\sim 1\text{-}3\%$ at the LHC) \cite{VanNeerven:1991}, \cite{Brein:2000} $\rightarrow vh@nnlo$.

- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2\lambda_t^2\alpha_S^2$ (non DY-like) corrections ($+5\%$ at the LHC) \cite{Kniehl:1990} \cite{Brein:2000} $\rightarrow vh@nnlo$.

- NNLO top-mediated contributions $\sim g^3\lambda_t\alpha_S^2$ to WH and ZH ($\sim 1\text{-}2\%$ at the LHC) recently computed: \cite{Brein:2011}.

- NLO EW corrections ($\sim 5\text{-}10\%$) \cite{Ciccolini:2003} \cite{Denner:2011}.
Associated VH production: differential distributions

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \rightarrow b\bar{b}$ and $W \rightarrow l\nu$ decays with spin correlations [G.F,Grazzini,Tramontano(’11)].

- NNLO fully-differential decay rate $H \rightarrow b\bar{b}$ (in the $m_b = 0$ approx.) computed through new non-linear mapping method: [Anastasiou,Herzog,Lazopoulos(’12)].

- NLO fully-differential QCD corrections for WH prod. including $H \rightarrow b\bar{b}$ NLO decay recently computed: [Banfi,Cancino(’12)].

- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2\lambda^2_i\alpha^2_S$ (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl(’90)] [Brein,Harlander,Djouadi(’00)]. Inclusion at fully differential level [G.F,Grazzini,Tramontano (in preparation)].

- Fully differential NLO EW corrections for VH [Denner,Dittmaier,Kallweit,Mück(’11)] \rightarrow HAWK, including leptonic V decay and photon induced processes.
Associated \(VH \) production: differential distributions

- Fully differential NNLO QCD corrections for \(WH \) (Drell-Yan like contributions), including tree-level \(H \rightarrow b \bar{b} \) and \(W \rightarrow l\nu \) decays with spin correlations [G.F, Grazzini, Tramontano (’11)].

- NNLO fully-differential decay rate \(H \rightarrow b \bar{b} \) (in the \(m_b = 0 \) approx.) computed through new non-linear mapping method: [Anastasiou, Herzog, Lazopoulos (’12)].

- NLO fully-differential QCD corrections for \(WH \) prod. including \(H \rightarrow b \bar{b} \) NLO decay recently computed: [Banfi, Cancino (’12)].

- For \(ZH \), \(gg \rightarrow HZ \) top-loop \(\sim g^2 \lambda_t^2 \alpha_S^2 \) (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl (’90)] [Brein, Harlander, Djouadi (’00)]. Inclusion at fully differential level [G.F, Grazzini, Tramontano (in preparation)].

- Fully differential NLO EW corrections for \(VH \) [Denner, Dittmaier, Kallweit, Mück (’11)] \(\rightarrow \) HAWK, including leptonic \(V \) decay and photon induced processes.
Associated VH production: differential distributions

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \to b\bar{b}$ and $W \to l\nu$ decays with spin correlations [G.F,Grazzini,Tramontano('11)].

- NNLO fully-differential decay rate $H \to b\bar{b}$ (in the $m_b = 0$ approx.) computed through new non-linear mapping method: [Anastasiou,Herzog,Lazopoulos('12)].

- NLO fully-differential QCD corrections for WH prod. including $H \to b\bar{b}$ NLO decay recently computed: [Banfi,Cancino('12)].

- For ZH, $gg \to HZ$ top-loop $\sim g^2\lambda_i^2\alpha_s^2$ (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)]. Inclusion at fully differential level [G.F,Grazzini,Tramontano (in preparation)].

- Fully differential NLO EW corrections for VH [Denner,Dittmaier,Kallweit,Mück('11)] \rightarrow HAWK, including leptonic V decay and photon induced processes.
Associated VH production: differential distributions

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \rightarrow b\bar{b}$ and $W \rightarrow l\nu$ decays with spin correlations [G.F, Grazzini, Tramontano (’11)].

- NNLO fully-differential decay rate $H \rightarrow b\bar{b}$ (in the $m_b = 0$ approx.) computed through new non-linear mapping method: [Anastasiou, Herzog, Lazopoulos (’12)].

- NLO fully-differential QCD corrections for WH prod. including $H \rightarrow b\bar{b}$ NLO decay recently computed: [Banfi, Cancino (’12)].

- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl (’90)] [Brein, Harlander, Djouadi (’00)]. Inclusion at fully differential level [G.F, Grazzini, Tramontano (in preparation)].

- Fully differential NLO EW corrections for VH [Denner, Dittmaier, Kallweit, Mück (’11)]→HAWK, including leptonic V decay and photon induced processes.
Associated \(VH \) production: differential distributions

- Fully differential NNLO QCD corrections for \(WH \) (Drell-Yan like contributions), including tree-level \(H \to b\bar{b} \) and \(W \to l\nu \) decays with spin correlations [G.F,Grazzini,Tramontano(’11)].

- NNLO fully-differential decay rate \(H \to b\bar{b} \) (in the \(m_b = 0 \) approx.) computed through new non-linear mapping method: [Anastasiou,Herzog,Lazopoulos(’12)].

- NLO fully-differential QCD corrections for \(WH \) prod. including \(H \to b\bar{b} \) NLO decay recently computed: [Banfi,Cancino(’12)].

- For \(ZH \), \(gg \to HZ \) top-loop \(\sim g^2\lambda^2_t\alpha^2_S \) (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl(’90)] [Brein,Harlander,Djouadi(’00)]. Inclusion at fully differential level [G.F,Grazzini,Tramontano (in preparation)].

- Fully differential NLO EW corrections for \(VH \) [Denner,Dittmaier,Kallweit,Mück(’11)] \(\rightarrow \) HAWK, including leptonic \(V \) decay and photon induced processes.
Fully-Exclusive Cross Sections at NNLO in hadron-collisions

- Experiments have finite acceptance, in particular VH experimental analyses performed in extreme kinematical regimes (e.g., boosted analysis with jet veto): important to provide exclusive theoretical predictions.

- At NLO general algorithms (e.g., Dipole formalism [Catani,Seymour(’98)]) allow (relative) straightforward fully-exclusive calculations.

- At NNLO in hadronic collisions only few fully exclusive calculations exist:

 - **Sector decomposition**: [Binoth,Heinrich(’00)]

 \[gg \rightarrow H \] [Anastasiou,Melnikov,Petriello(’04)]→FEHIP

 Drell-Yan [Melnikov,Petriello(’06)]→FEWZ

 - **q_T-subtraction**:

 \[gg \rightarrow H \] [Catani,Grazzini(’07)]→HNNLO

 Drell-Yan [Catani,Cieri,de Florian,G.F.,Grazzini(’09)]→DYNLO

 Associated WH production [G.F.,Grazzini,Tramontano(’11)]→WNNO

 Diphoton prod.[Catani,Cieri,de Florian,G.F.,Grazzini(’11)]→2γNNLO

 (see L. Cieri talk)
Fully-Exclusive Cross Sections at NNLO in hadron-collisions

- Experiments have finite acceptance, in particular \(VH \) experimental analyses performed in extreme kinematical regimes (e.g. boosted analysis with jet veto): important to provide exclusive theoretical predictions.

- At NLO general algorithms (e.g. Dipole formalism \[\text{Catani, Seymour ('98)} \]) allow (relative) straightforward fully-exclusive calculations.

- At NNLO in hadronic collisions only few fully exclusive calculations exist:
 - **Sector decomposition:** \[\text{Binoth, Heinrich ('00)} \]
 \[gg \to H \quad \text{Anastasiou, Melnikov, Petriello ('04)} \to \text{FEHIP} \]
 Drell-Yan \[\text{Melnikov, Petriello ('06)} \to \text{FEWZ} \]
 - **\(q_T \)-subtraction:**
 \[gg \to H \quad \text{Catani, Grazzini ('07)} \to \text{HNNLO} \]
 Drell-Yan \[\text{Catani, Cieri, de Florian, G.F., Grazzini ('09)} \to \text{DYNNLO} \]
 Associated \(WH \) production \[\text{G.F., Grazzini, Tramontano ('11)} \to \text{WNNLO} \]
 Diphoton prod. \[\text{Catani, Cieri, de Florian, G.F., Grazzini ('11)} \to 2\gamma \text{NNLO} \]
 (see L. Cieri talk)
The q_T-subtraction formalism at NNLO

\[h_1(p_1) + h_2(p_2) \to V(M, q_T) + X \]

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,…) [Catani,Grazzini(’07)].

- **Key point I**: at LO the q_T of the V is exactly zero.

\[
\left. d\sigma^V_{(N)NLO} \right|_{q_T \neq 0} = d\sigma^{V+jets}_{(N)LO},
\]

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- **Key point II**: treat the NNLO singularities at $q_T = 0$ by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani,de Florian,Grazzini(’00)].

\[
d\sigma_{nLO}^{V} \underset{q_T \to 0}{\longrightarrow} d\sigma_{LO}^{V} \otimes \Sigma(q_T/M)dq_T^2 = d\sigma_{LO}^{V} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_s}{\pi} \right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2 q_T
\]

\[
d\sigma^{CT} \underset{q_T \to 0}{\longrightarrow} d\sigma_{LO}^{V} \otimes \Sigma(q_T/M)dq_T^2
\]
The q_T-subtraction formalism at NNLO

$$h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$$

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons, ...) [Catani, Grazzini('07)].

- **Key point I:** at LO the q_T of the V is exactly zero.

 $$d\sigma^V_{(N)\text{NLO}}|_{q_T \neq 0} = d\sigma^{V+\text{jets}}_{(N)\text{LO}},$$

 for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- **Key point II:** treat the NNLO singularities at $q_T = 0$ by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

 $$d\sigma^V_{N^n\text{LO}} \xrightarrow{q_T \to 0} d\sigma^V_{\text{LO}} \otimes \sum(q_T/M)dq_T^2 = d\sigma^V_{\text{LO}} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_S}{\pi} \right)^n \sum^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2q_T$$

 $$d\sigma^C_T \xrightarrow{q_T \to 0} d\sigma^V_{\text{LO}} \otimes \sum(q_T/M)dq_T^2$$
The q_T-subtraction formalism at NNLO

\[
h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X
\]

V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,…) [Catani,Grazzini(‘07)].

- **Key point I**: at LO the q_T of the V is exactly zero.

\[
d\sigma_V^{(N)\text{NLO}}|_{q_T \neq 0} = d\sigma_{(N)\text{LO}}^{V+\text{jets}},
\]

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.

- **Key point II**: treat the NNLO singularities at $q_T = 0$ by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani,de Florian,Grazzini(‘00)].

\[
d\sigma_{V_n\text{LO}}^{V} \xrightarrow{q_T \rightarrow 0} d\sigma_{LO}^{V} \otimes \Sigma(q_T/M)dq_T^2 = d\sigma_{LO}^{V} \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_s}{\pi}\right)^n \Sigma^{(n,k)} \frac{M^2}{q_T^2} \ln^{k-1} \frac{M^2}{q_T^2} d^2q_T
\]

\[
d\sigma_{CT}^{q_T \rightarrow 0} d\sigma_{LO}^{V} \otimes \Sigma(q_T/M)dq_T^2
\]
The final result valid also for $q_T = 0$ is:

$$d\sigma^V_{(N)NLO} = \mathcal{H}^V_{(N)NLO} \otimes d\sigma^V_{LO} + \left[d\sigma^{V+\text{jets}}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right],$$

where

$$\mathcal{H}^V_{NNLO} = \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}^V(1) + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}^V(2) \right].$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT}_{q_T \rightarrow 0} \rightarrow d\sigma^V_{LO} \otimes \Sigma(q_T/M)dq_T^2$ where $\Sigma(q_T/M)$ is universal.

- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}^V_{NNLO}.

- Final state partons only appear in $d\sigma^{V+\text{jets}}$ so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.
The final result valid also for $q_T = 0$ is:

$$d\sigma_{(N)NLO}^V = \mathcal{H}_{(N)NLO}^V \otimes d\sigma_{LO}^V + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right],$$

where $\mathcal{H}_{NNLO}^V = \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}^{V(2)} \right]$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma_{CT}^{q_T \to 0} d\sigma_{LO}^V \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma_{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma_{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V.
- Final state partons only appear in $d\sigma_{V+\text{jets}}$ so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.
The final result valid also for $q_T = 0$ is:

\[
d\sigma^{V,(N)NLO}_{(N)NLO} = \mathcal{H}^{V,(N)NLO} \otimes d\sigma^{V,LO} + \left[d\sigma^{V+jets,(N)LO}_{(N)LO} - d\sigma^{CT,(N)LO}_{(N)LO} \right] ,
\]

where \(\mathcal{H}^{V,NNLO} = \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}^{V(2)} \right] \).

- The choice of the counter-term has some arbitrariness but it must behave
 \(d\sigma^{CT, q_T \to 0} \to d\sigma^{V,LO} \otimes \Sigma(q_T/M)dq_T^2 \) where \(\Sigma(q_T/M) \) is universal.

- \(d\sigma^{CT} \) regularizes the \(q_T = 0 \) singularity of \(d\sigma^{V+jets} \): double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \(\mathcal{H}^{V,NNLO} \).

- Final state partons only appear in \(d\sigma^{V+jets} \) so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.
The final result valid also for $q_T = 0$ is:

$$d\sigma^{V}_{(N)NLO} = \mathcal{H}^{V}_{(N)NLO} \otimes d\sigma^{V}_{LO} + \left[d\sigma^{V+\text{jets}}_{(N)LO} - d\sigma^{CT}_{(N)LO} \right],$$

where $\mathcal{H}^{V}_{NNLO} = \left[1 + \frac{\alpha_S}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_S}{\pi} \right)^2 \mathcal{H}^{V(2)} \right]$.

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT}_{q_T \to 0} \rightarrow d\sigma^{V}_{LO} \otimes \Sigma(q_T/M)dq_T^2$ where $\Sigma(q_T/M)$ is universal.

- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}^{V}_{NNLO}.

- Final state partons only appear in $d\sigma^{V+\text{jets}}$ so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.
Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

A NLO calculation for \(h_1 h_2 \rightarrow V + X \) requires:

- \(d\sigma_{LO}^{V+\text{jets}} \) (and \(d\sigma_{LO}^{V} \)).
- \(\mathcal{H}_{V}^{(1)} \) [de Florian, Grazzini (’01)]: contains the finite-part of the one-loop amplitude \(c\bar{c} \rightarrow V \).
- \(d\sigma_{LO}^{CT} \): depends by the (universal) \(q_T \)-resummation coeff. \(A_1 \) and \(B_1 \).

A NNLO calculation for \(h_1 h_2 \rightarrow V + X \) requires also:

- \(d\sigma_{NLO}^{V+\text{jets}} \).
- \(\mathcal{H}_{V}^{(2)} \): contains the finite-part of the two-loops amplitude \(c\bar{c} \rightarrow V \).
- \(d\sigma_{NLO}^{CT} \): depends by the (universal) \(q_T \)-resummation coeff. \(A_2 \) and \(B_2 \).

WH production at NNLO within \(q_T \)-subtraction:

- \(d\sigma_{NLO}^{WH+\text{jets}} \).
- \(\mathcal{H}_{DY}^{(2)} \) [Catani, Cieri, de Florian, G.F., Grazzini (’12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte Carlo code: [G.F., Grazzini, Tramontano (’11)].
Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for $h_1 h_2 \to V + X$ requires:
 - $d\sigma^{V+\text{jets}}_{\text{LO}}$ (and $d\sigma^V_{\text{LO}}$).
 - $\mathcal{H}^V(1)$ [de Florian, Grazzini ('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \to V$.
 - $d\sigma^{CT}_{\text{LO}}$: depends by the (universal) q_T-resummation coeff. A_1 and B_1.

- A NNLO calculation for $h_1 h_2 \to V + X$ requires also:
 - $d\sigma^{V+\text{jets}}_{\text{NLO}}$.
 - $\mathcal{H}^V(2)$: contains the finite-part of the two-loops amplitude $c\bar{c} \to V$.
 - $d\sigma^{CT}_{\text{NLO}}$: depends by the (universal) q_T-resummation coeff. A_2 and B_2.

- WH production at NNLO within q_T-subtraction:
 - $d\sigma^{WH+\text{jets}}_{\text{NLO}}$.
 - $\mathcal{H}^{DY(2)}$ [Catani, Cieri, de Florian, G.F., Grazzini ('12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte Carlo code: [G.F., Grazzini, Tramontano ('11)]
Associated \(WH \) production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for \(h_1 h_2 \rightarrow V + X \) requires:
 - \(d\sigma^{V+\text{jets}}_{\text{LO}} \) (and \(d\sigma^{V}_{\text{LO}} \)).
 - \(\mathcal{H}_{V}^{(1)} \) [de Florian, Grazzini(’01)]: contains the finite-part of the one-loop amplitude \(c\bar{c} \rightarrow V \).
 - \(d\sigma^{CT}_{\text{LO}} \): depends by the (universal) \(q_T \)-resummation coeff. \(A_1 \) and \(B_1 \).

- A NNLO calculation for \(h_1 h_2 \rightarrow V + X \) requires also:
 - \(d\sigma^{V+\text{jets}}_{\text{NLO}} \).
 - \(\mathcal{H}_{V}^{(2)} \): contains the finite-part of the two-loops amplitude \(c\bar{c} \rightarrow V \).
 - \(d\sigma^{CT}_{\text{NLO}} \): depends by the (universal) \(q_T \)-resummation coeff. \(A_2 \) and \(B_2 \).

- \(WH \) production at NNLO within \(q_T \)-subtraction:
 - \(d\sigma^{WH+\text{jets}}_{\text{NLO}} \).
 - \(\mathcal{H}_{DY}^{(2)} \) [Catani, Cieri, de Florian, G.F., Grazzini(’12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte Carlo code: [G.F., Grazzini, Tramontano(’11)]
Numerical results at the LHC and the Tevatron
Selection strategy of [Butterworth et al. (’08)]: search a large-p_T Higgs boson through a collimated $b\bar{b}$ pair decay.

Cuts:
Leptons: $p_T^{l} > 30\text{GeV}$, $|\eta^{l}| < 2.5$,
$\not{p}_T > 30\text{GeV}$, $p_T^{W} > 200\text{GeV}$.
Jets: Cambridge/Aachen algorithm with $R=1.2$.
Fat jet (contain the $b\bar{b}$) $p_T^{J} > 200\text{GeV}$, $|\eta^{J}| < 2.5$
Jet veto: No other jets with $p_T > 20\text{GeV}$ and $|\eta| < 5$.

Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).

Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

$pp \rightarrow WH(\rightarrow l\nu b\bar{b})$

p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120\text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Outline | Associated VH production | q_T-subtraction | VH production at NNLO | Conclusions

Selection strategy of [Butterworth et al. (’08)]: search a large-p_T Higgs boson thorough a collimated $b\bar{b}$ pair decay.

Cuts:
Leptons: $p_T^l > 30\text{GeV}$, $|\eta^l| < 2.5$,
$p_T^{miss} > 30\text{GeV}$, $p_T^W > 200\text{GeV}$.

Jets: Cambridge/Aachen algorithm with $R=1.2$.

Fat jet (contain the $b\bar{b}$) $p_T^J > 200\text{GeV}$, $|\eta^J| < 2.5$

Jet veto: No other jets with $p_T > 20\text{GeV}$ and $|\eta| < 5$.

Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).

Jet veto strongly affect the higher order corrections \Rightarrow stability of fixed order calculation challenged.

$pp \rightarrow WH(\rightarrow l\nu b\bar{b})$

p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120\text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Selection strategy of [Butterworth et al. (’08)]: search a large-p_T Higgs boson thorough a collimated $b\bar{b}$ pair decay.

Cuts:
Leptons: $p_T^l > 30\text{GeV}$, $|\eta^l| < 2.5$,
$p_T^{\text{miss}} > 30\text{GeV}$, $p_T^W > 200\text{GeV}$.
Jets: Cambridge/Aachen algorithm with $R=1.2$.
Fat jet (contain the $b\bar{b}$) $p_T^J > 200\text{GeV}$, $|\eta^J| < 2.5$
Jet veto: No other jets with $p_T > 20\text{GeV}$ and $|\eta| < 5$.

Large negative higher-order corrections: NLO (NNLO) effects $-52%/-36% (-6%/-19%)$, depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).

Jet veto strongly affect the higher order corrections \Rightarrow stability of fixed order calculation challenged.

$pp \rightarrow WH(\rightarrow l\nu b\bar{b})$

p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120\text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Selection strategy of [Butterworth et al. (08)]: search a large-p_T Higgs boson through a collimated $b\bar{b}$ pair decay.

Cuts:
- Leptons: $p_T^l > 30\text{GeV}, |\eta^l| < 2.5$,
- $p_T^{\text{miss}} > 30\text{GeV}, p_W^T > 200\text{GeV}$.
- Jets: Cambridge/Aachen algorithm with $R=1.2$.
 - Fat jet (contain the $b\bar{b}$) $p_T^J > 200\text{GeV}$, $|\eta^J| < 2.5$
 - Jet veto: No other jets with $p_T > 20\text{GeV}$ and $|\eta| < 5$.

Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).

Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

$pp \rightarrow WH(\rightarrow l\nu b\bar{b})$

p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120\text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Cuts:
Leptons: $p_T^l > 20 \text{GeV}, |\eta^l| < 2, p_T^{\text{miss}} > 20 \text{GeV}$.
Jets: k_T algorithm with $R=0.4$.
Exactly two jets (with $p_T > 20 \text{GeV}$ and $|\eta| < 2$) at least one of them has to be a b jet (with $|\eta| < 1$).

Higher-order corrections: NLO (NNLO) effects from $+13\%$ to $+30\%$ (from -1% to $+4\%$) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.

The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

$p\bar{p} \rightarrow WH(\rightarrow l\nu b\bar{b})$
p_T spectra of the dijet system at the Tevatron for $m_H = 120 \text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Cuts:
Leptons: $p_T^l > 20 \text{GeV}, |\eta^l| < 2$, $p_T^{\text{miss}} > 20 \text{GeV}$.
Jets: k_T algorithm with $R=0.4$.
Exactly two jets (with $p_T > 20 \text{GeV}$ and $|\eta| < 2$) at least one of them has to be a b jet (with $|\eta| < 1$).

Higher-order corrections: NLO (NNLO) effects from $+13\%$ to $+30\%$ (from -1% to $+4\%$) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.

The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

$p\bar{p} \rightarrow WH(\rightarrow l\nu b\bar{b})$

p_T spectra of the dijet system at the Tevatron for $m_H = 120 \text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
Cuts:
Leptons: $p_T^l > 20\text{GeV}$, $|\eta^l| < 2$, $p_T^{miss} > 20\text{GeV}$.
Jets: k_T algorithm with $R=0.4$.
Exactly two jets (with $p_T > 20\text{GeV}$ and $|\eta| < 2$) at least one of them has to be a b jet (with $|\eta| < 1$).

Higher-order corrections: NLO (NNLO) effects from $+13\%$ to $+30\%$ (from -1% to $+4\%$) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.

The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

\[p\bar{p} \rightarrow WH(\rightarrow l\nu b\bar{b}) \]

p_T spectra of the dijet system at the Tevatron for $m_H = 120\text{GeV}$ at LO (dots), NLO (dashes) and NNLO (solid).
NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

$gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.

- Cuts (we follow CMS analysis):
 - Leptons: $p_T^l > 20 \text{GeV}, |\eta^l| < 2.5$,
 - $75 < m_{ll} < 105 \text{GeV}, p_T^{ll} > 100 \text{GeV}$.
 - Jets: anti-k_T algorithm with $R=0.5$.
 - Two b-jets (with $p_T > 20 \text{GeV}, |\eta| < 2.5$ and $p_T^{bb} > 100 \text{GeV}$).
 - Jet veto: extra jet radiation is vetoed if $p_T > 20 \text{GeV}$ and $|\eta| < 2.5$.

- Higher-order corrections: NLO (NNLO) effects:
 - without jet-veto $+20\% (+14\%)$; with jet-veto $-20\% (+14\%)$.
 - Effect of the jet-veto: -33% both at NLO and NNLO.

$pp \rightarrow ZH(\rightarrow 2l b\bar{b})$

p_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125 \text{GeV}$ at NLO and NNLO with and without the jet veto.
NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

- $gg \to HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.

- Cuts (we follow CMS analysis):
 - Leptons: $p_T^l > 20$ GeV, $|\eta^l| < 2.5$, $75 < m_{ll} < 105$ GeV, $p_T^{ll} > 100$ GeV.
 - Jets: anti-k_T algorithm with $R=0.5$.
 - Two b-jets (with $p_T > 20$ GeV, $|\eta| < 2.5$ and $p_T^{bb} > 100$ GeV).
 - Jet veto: extra jet radiation is vetoed if $p_T > 20$ GeV and $|\eta| < 2.5$.

- Higher-order corrections: NLO (NNLO) effects:
 - without jet-veto $+20\% (+14\%)$; with jet-veto $-20\% (+14\%)$.
 - Effect of the jet-veto: -33% both at NLO and NNLO.

$pp \to ZH(\to 2l b\bar{b})$

\vec{p}_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125$ GeV at NLO and NNLO with and without the jet veto.
NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

- $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.
- Cuts (we follow CMS analysis):
 - Leptons: $p_T^l > 20\text{GeV}$, $|\eta^l| < 2.5$, $75 < m_{ll} < 105\text{GeV}$, $p_T^{ll} > 100\text{GeV}$.
 - Jets: anti-k_T algorithm with $R=0.5$.
 - Two b-jets (with $p_T > 20\text{GeV}$, $|\eta| < 2.5$ and $p_T^{bb} > 100\text{GeV}$).
 - Jet veto: extra jet radiation is vetoed if $p_T > 20\text{GeV}$ and $|\eta| < 2.5$.
- Higher-order corrections: NLO (NNLO) effects:
 - without jet-veto $+20\% (+14\%)$; with jet-veto $-20\% (+14\%)$.
 - Effect of the jet-veto: -33% both at NLO and NNLO.

$pp \rightarrow ZH(\rightarrow 2l b\bar{b})$

p_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125\text{GeV}$ at NLO and NNLO with and without the jet veto.

Distributions in $p_{T,H}$ for $pp \rightarrow WH \rightarrow l\nu H$ (NNLO QCD + NLO EW) and for $pp \rightarrow ZH \rightarrow ll/\nu\nu H$ (NLO QCD + NLO EW) at $\sqrt{s} = 7$ TeV.

Boosted setup: $|\eta_l| < 2.5$, $p_{T,l} > 20$ GeV, $p_{T,\nu} > 25$ GeV, $p_{T,H} > 200$ GeV, $p_{T,W/Z} > 190$ GeV.

We produced similar results at $\sqrt{s} = 8$ TeV.
Conclusions

- Calculation of **NNLO QCD corrections to VH production** in hadron collision using the q_T-subtraction formalism, included in a **fully-exclusive** parton-level Monte Carlo code.

- NNLO corrections can be important:
 - *large and negative:* $\sim -20\%$ for the WH fat-jet analysis at the LHC@14 TeV when a jet veto is applied;
 - *sizeable* for the CMS analysis at the LHC;
 - *moderate* for the WH Tevatron analysis.

- **Outlook/Work in progress:**
 - Public release of the parton-level numerical code.
 - Inclusion of the higher-order QCD correction to $H \rightarrow b\bar{b}$ decay.
 - Extension to the ZH production.
 - Inclusion of $H \rightarrow WW/ZZ \rightarrow 2l2\nu/4l$ decay.
 - Comparison with parton-shower Monte Carlo predictions.
 - Study of the NNLO uncertainty band: **first reliable estimate** of perturbative uncertainty.