Higher order QCD corrections for associated VH production at hadron colliders

Giancarlo Ferrera

giancarlo.ferrera@mi.infn.it

HP2 - Munich - Sept. 4th 2012

In collaboration with: M. Grazzini & F. Tramontano

イロト 不得 とくほと くほとう ほ

Outline

1 Associated VH production at hadron colliders

2 q_T -subtraction formalism at NNLO

3 Associated VH production at NNLO: numerical results

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

Motivations

Associated vector boson Higgs (VH) production (with $H \rightarrow b\bar{b}$ and $V \rightarrow l_1 l_2$ decay) is an important mechanism for discovery and study the properties of the Higgs boson.

- At the LHC it is important channel through boosted analysis with jet reconstruction and decomposition techniques [Butterworth et al.('08)].
- At the Tevatron is the main search channel in the low Higgs mass region.

To get closer to SM VH sensitivity with the LHC 2012 data, precise theoretical predictions needed \implies computation of higher-order QCD corrections.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Outline	Associated VH production	q_T -subtraction	VH production at NNLC	Conclusions
Associa	ated VH production	$h_1(p_1)$	$f_{a/h_1}(x_1,\mu_F^2)$	H,

$$\begin{split} h_1(p_1) + h_2(p_2) &\rightarrow V + H + X \rightarrow \ell_1 \ell_2 + b\bar{b} + X \\ \text{where} \quad V = Z^0, W^{\pm} \quad \text{and} \quad \ell_1 \ell_2 = \ell^+ \ell^-, \ell \nu_\ell \end{split}$$

According to the QCD factorization theorem:

$$d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).$$

 $\begin{aligned} d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) \ &= \ d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) \ + \ \alpha_S(\mu_R^2) \ d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2) \\ &+ \ \alpha_S^2(\mu_R^2) \ d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_F^2, \mu_R^2) \ + \ \mathcal{O}(\alpha_S^3) \,. \end{aligned}$

In the following we do not consider QCD corrections to $H
ightarrow b ar{b}$ decay.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions
Associa	ited <i>VH</i> producti	on $h_1(p_1)$	$f_{a/b_1}(x_1,\mu_F^2)$	$H_{i} = \ell_1$
$h_1(p_1)+h_2$ where	$(p_2) \rightarrow V + H + X \rightarrow \ell_1$ $V = Z^0, W^{\pm} \text{ and } \ell_1 \ell_2 = \ell^+$	$\ell_1 \ell_2 + b\bar{b} + X$ $\ell^-, \ell u_\ell$	$\hat{\sigma}_{ab}$ $b(x_2p_2)$	

According to the QCD factorization theorem:

$$d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).$$

 $\begin{aligned} d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) \ &= \ d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) \ + \ \alpha_5(\mu_R^2) \ d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2) \\ &+ \ \alpha_5^2(\mu_R^2) \ d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_F^2, \mu_R^2) \ + \ \mathcal{O}(\alpha_S^3) \,. \end{aligned}$

In the following we do not consider QCD corrections to $H \rightarrow b\bar{b}$ decay.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions
Associa	ited <i>VH</i> producti	$h_1(p_1) \longrightarrow$	$f_{a/h_1}(x_1, \mu_F^2)$	
$h_1(p_1)+h_2$	$(p_2) \rightarrow V + H + X \rightarrow \ell$	$b_1\ell_2 + b\bar{b} + X$	(ô _{ab})	V ℓ_2
where	$V=Z^0, W^{\pm}$ and $\ell_1\ell_2=\ell^+$	$\ell^- \ell^-, \ell \nu_\ell$	b(x ₂ p ₂)	X

 $h_2(p_2) = f_{h/h_2}(x_2, \mu_r^2)$

According to the QCD factorization theorem:

$$d\sigma(p_1, p_2) = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) d\hat{\sigma}_{ab}(x_1 p_1, x_2 p_2; \mu_F^2).$$

$$\begin{aligned} d\hat{\sigma}_{ab}(\hat{p}_1, \hat{p}_2; \mu_F^2) &= d\hat{\sigma}_{ab}^{(0)}(\hat{p}_1, \hat{p}_2; \mu_F^2) + \alpha_5(\mu_R^2) \, d\hat{\sigma}_{ab}^{(1)}(\hat{p}_1, \hat{p}_2; \mu_F^2) \\ &+ \alpha_5^2(\mu_R^2) \, d\hat{\sigma}_{ab}^{(2)}(\hat{p}_1, \hat{p}_2; \mu_F^2, \mu_R^2) \, + \, \mathcal{O}(\alpha_5^3) \,. \end{aligned}$$

In the following we do not consider QCD corrections to $H
ightarrow b ar{b}$ decay.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Associated VH production: total cross section

н

- NNLO QCD corrections for WH are basically the same of DY (~ 1-3% at the LHC) [VanNeerven et al.('91)], [Brein, Harlander, Djouadi('00)]→vh@nnlo.
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) corrections (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)] \rightarrow vh@nnlo.
- NNLO top-mediated contributions ~ g³λ_tα₅² to WH and ZH (~ 1-2% at the LHC) recently computed: [Brein,Harlander,Wiesemann,Zirke('11)].
- NLO EW corrections (~ 5-10%) [Ciccolini,Dittmaier,Krämer('03)] [Denner,Dittmaier,Kallweit,Mück('11)]

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Associated VH production: total cross section

- NNLO QCD corrections for WH are basically the same of DY (~ 1-3% at the LHC) [VanNeerven et al.('91)], [Brein, Harlander, Djouadi('00)]→vh@nnlo.
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) corrections (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)] \rightarrow vh@nnlo.
- NNLO top-mediated contributions ~ g³λ_tα₅² to WH and ZH (~ 1-2% at the LHC) recently computed: [Brein,Harlander,Wiesemann,Zirke('11)].
- NLO EW corrections (~ 5-10%) [Ciccolini,Dittmaier,Krämer('03)] [Denner,Dittmaier,Kallweit,Mück('11)]

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Associated VH production: total cross section

- NNLO QCD corrections for WH are basically the same of DY (~ 1-3% at the LHC) [VanNeerven et al.('91)], [Brein, Harlander, Djouadi('00)]→vh@nnlo.
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) corrections (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)] \rightarrow vh@nnlo.
- NNLO top-mediated contributions ~ g³λ_tα²₅ to WH and ZH (~ 1-2% at the LHC) recently computed: [Brein,Harlander,Wiesemann,Zirke('11)]

 NLO EW corrections (~ 5-10%) [Ciccolini,Dittmaier,Krämer('03)] [Denner,Dittmaier,Kallweit,Mück('11)]

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Associated VH production: total cross section

- NNLO QCD corrections for WH are basically the same of DY (~ 1-3% at the LHC) [VanNeerven et al.('91)], [Brein, Harlander, Djouadi('00)] -> vh@nnlo.
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) corrections (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)] \rightarrow vh@nnlo.
- NNLO top-mediated contributions ~ g³λ_tα₅² to WH and ZH (~ 1-2% at the LHC) recently computed: [Brein,Harlander,Wiesemann,Zirke('11)]

 NLO EW corrections (~ 5-10%) [Ciccolini,Dittmaier,Krämer('03)] [Denner,Dittmaier,Kallweit,Mück('11)]

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \rightarrow b\bar{b}$ and $W \rightarrow l\nu$ decays with spin correlations [G.F, Grazzini, Tramontano('11)].
- NNLO fully-differential decay rate $H \rightarrow bb$ (in the $m_b = 0$ approx.) computed
- NLO fully-differential QCD corrections for WH prod. including $H \rightarrow b\bar{b}$ NLO
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) NNLO corrections are
- Fully differential NLO EW corrections for VH

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \rightarrow b\bar{b}$ and $W \rightarrow l\nu$ decays with spin correlations [G.F, Grazzini, Tramontano('11)].
- NNLO fully-differential decay rate $H \rightarrow b\bar{b}$ (in the $m_b = 0$ approx.) computed through new non-linear mapping method: [Anastasiou, Herzog, Lazopoulos('12)].
- NLO fully-differential QCD corrections for WH prod. including $H \rightarrow b\bar{b}$ NLO
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) NNLO corrections are
- Fully differential NLO EW corrections for VH

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level $H \rightarrow b\bar{b}$ and $W \rightarrow l\nu$ decays with spin correlations [G.F, Grazzini, Tramontano('11)].
- NNLO fully-differential decay rate $H \rightarrow b\bar{b}$ (in the $m_b = 0$ approx.) computed through new non-linear mapping method: [Anastasiou, Herzog, Lazopoulos('12)].
- NLO fully-differential QCD corrections for WH prod. including $H \rightarrow b\bar{b}$ NLO decay recently computed: [Banfi, Cancino('12)].
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) NNLO corrections are
- Fully differential NLO EW corrections for VH < (□) > < (□) >

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level H → bb and W → lν decays with spin correlations [G.F,Grazzini,Tramontano('11)].
- NNLO fully-differential decay rate H → bb̄ (in the m_b = 0 approx.) computed through new non-linear mapping method: [Anastasiou,Herzog,Lazopoulos('12)].
- NLO fully-differential QCD corrections for WH prod. including H → bb NLO decay recently computed: [Banfi,Cancino('12)].
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_s^2$ (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)]. Inclusion at fully differential level [G.F,Grazzini,Tramontano (in preparation)].
- Fully differential NLO EW corrections for VH
 [Denner,Dittmaier,Kallweit,Mück('11)]→HAWK, including leptonic V decay and photon induced processes.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

- Fully differential NNLO QCD corrections for WH (Drell-Yan like contributions), including tree-level H → bb and W → lν decays with spin correlations [G.F,Grazzini,Tramontano('11)].
- NNLO fully-differential decay rate H → bb̄ (in the m_b = 0 approx.) computed through new non-linear mapping method: [Anastasiou,Herzog,Lazopoulos('12)].
- NLO fully-differential QCD corrections for WH prod. including H → bb NLO decay recently computed: [Banfi,Cancino('12)].
- For ZH, $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_5^2$ (non DY-like) NNLO corrections are relevant (+5% at the LHC) [Kniehl('90)] [Brein,Harlander,Djouadi('00)]. Inclusion at fully differential level [G.F,Grazzini,Tramontano (in preparation)].
- Fully differential NLO EW corrections for VH
 [Denner,Dittmaier,Kallweit,Mück('11)]→HAWK, including leptonic V decay
 and photon induced processes.

High Precision for Hard processes – Munich – 4/9/2012

Fully-Exclusive Cross Sections at NNLO in hadron-collisions

- Experiments have finite acceptance, in particular VH experimental analyses performed in extreme kinematical regimes (e.g. boosted analysis with jet veto): important to provide exclusive theoretical predictions.
- At NLO general algorithms (e.g. Dipole formalism [Catani, Seymour('98)]) allow (relative) straightforward fully-exclusive calculations.
- At NNLO in hadronic collisions only few fully exclusive calculations exist:
 - Sector decomposition: [Binoth, Heinrich('00)]

Giancarlo Ferrera – Università di Milano

イロト イポト イヨト イヨト High Precision for Hard processes - Munich - 4/9/2012

э

Fully-Exclusive Cross Sections at NNLO in hadron-collisions

- Experiments have finite acceptance, in particular VH experimental analyses performed in extreme kinematical regimes (e.g. boosted analysis with jet veto): important to provide exclusive theoretical predictions.
- At NLO general algorithms (e.g. Dipole formalism [Catani, Seymour('98)]) allow (relative) straightforward fully-exclusive calculations.
- At NNLO in hadronic collisions only few fully exclusive calculations exist:
 - Sector decomposition: [Binoth, Heinrich('00)] gg → H [Anastasiou, Melnikov, Petriello('04)]→FEHIP Drell-Yan [Melnikov, Petriello('06)]→FEWZ
 - *q*_T-subtraction:

 $gg \rightarrow H$ [Catani,Grazzini('07)] \rightarrow HNNLO Drell-Yan [Catani,Cieri,de Florian,G.F.,Grazzini('09)] \rightarrow DYNNLO Associated WH production [G.F.,Grazzini,Tramontano('11)] \rightarrow WNNLO Diphoton prod.[Catani,Cieri,de Florian,G.F.,Grazzini('11)] \rightarrow 2 γ NNLO (see L. Cieri talk)

Giancarlo Ferrera – Università di Milano

 < □ > < □</td>
 < Ξ > < Ξ > < Ξ</td>
 < < </td>

 High Precision for Hard processes – Munich – 4/9/2012

The q_T -subtraction formalism at NNLO

 $h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$ V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani, Grazzini('07)]. \bar{q}

• Key point I: at LO the q_T of the V is exactly zero.

 $d\sigma^V_{(N)NLO}|_{q_{T}
eq 0} = d\sigma^{V+\mathrm{jets}}_{(N)LO} \; ,$

 $V = -k_T$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$d\sigma_{N^{n}LO}^{V} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2} = d\sigma_{LO}^{V} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{M^{2}}{q_{T}^{2}} \ln^{k-1} \frac{M^{2}}{q_{T}^{2}} d^{2}q_{T}$$
$$d\sigma^{CT} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2}$$

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

The q_T -subtraction formalism at NNLO

 $h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$ V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani, Grazzini('07)]. \bar{q}_1

• Key point I: at LO the q_T of the V is exactly zero.

$$d\sigma^V_{(N)NLO}|_{q_T \neq 0} = d\sigma^{V+\text{jets}}_{(N)LO} \; ,$$

 $\bigvee_{\substack{V \\ V \\ m}} q_T = -k_T$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani,de Florian,Grazzini('00)].

$$d\sigma_{N^{n}LO}^{V} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2} = d\sigma_{LO}^{V} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{M^{2}}{q_{T}^{2}} \ln^{k-1} \frac{M^{2}}{q_{T}^{2}} d^{2}q_{T}$$

$$d\sigma_{LO}^{CT} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) d\sigma_{T}^{2}$$

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

The q_T -subtraction formalism at NNLO

 $h_1(p_1) + h_2(p_2) \rightarrow V(M, q_T) + X$ V is one or more colourless particles (vector bosons, leptons, photons, Higgs bosons,...) [Catani, Grazzini('07)]. \bar{q}_1

• Key point I: at LO the q_T of the V is exactly zero.

$$d\sigma^V_{(N)NLO}|_{q_T
eq 0} = d\sigma^{V+ ext{jets}}_{(N)LO} \; ,$$

 $\bigvee_{\substack{V \\ V \\ m}} q_T = -k_T$

for $q_T \neq 0$ the NNLO IR divergences cancelled with the NLO subtraction method.

- The only remaining NNLO singularities are associated with the $q_T \rightarrow 0$ limit.
- Key point II: treat the NNLO singularities at q_T = 0 by an additional subtraction using the universality of logarithmically-enhanced contributions from q_T resummation formalism [Catani, de Florian, Grazzini('00)].

$$d\sigma_{N^{n}LO}^{V} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2} = d\sigma_{LO}^{V} \otimes \sum_{n=1}^{\infty} \sum_{k=1}^{2n} \left(\frac{\alpha_{S}}{\pi}\right)^{n} \Sigma^{(n,k)} \frac{M^{2}}{q_{T}^{2}} \ln^{k-1} \frac{M^{2}}{q_{T}^{2}} d^{2}q_{T}$$
$$d\sigma^{CT} \xrightarrow{q_{T} \to 0} d\sigma_{LO}^{V} \otimes \Sigma(q_{T}/M) dq_{T}^{2}$$

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions

$$\begin{split} d\sigma_{(N)NLO}^{V} &= \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,\\ \text{where} \quad \mathcal{H}_{NNLO}^{V} &= \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi} \right)^{2} \mathcal{H}^{V(2)} \right] \end{split}$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- dσ^{CT} regularizes the q_T = 0 singularity of dσ^{V+jets}: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in H^V_{NNLO}.
- Final state partons only appear in dσ^{V+jets} so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where
$$\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{V(2)}\right]$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LQ} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and
- Final state partons only appear in $d\sigma^{V+\text{jets}}$ so that NNLO IR-safe cuts are

3

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] ,$$

where
$$\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{V(2)}\right]$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

3

Outline	Associated VH production	q_T -subtraction	VH production at NNLO	Conclusions

$$d\sigma_{(N)NLO}^{V} = \mathcal{H}_{(N)NLO}^{V} \otimes d\sigma_{LO}^{V} + \left[d\sigma_{(N)LO}^{V+\text{jets}} - d\sigma_{(N)LO}^{CT} \right] \ ,$$

where
$$\mathcal{H}_{NNLO}^{V} = \left[1 + \frac{\alpha_{S}}{\pi} \mathcal{H}^{V(1)} + \left(\frac{\alpha_{S}}{\pi}\right)^{2} \mathcal{H}^{V(2)}\right]$$

- The choice of the counter-term has some arbitrariness but it must behave $d\sigma^{CT} \xrightarrow{q_T \to 0} d\sigma^V_{LO} \otimes \Sigma(q_T/M) dq_T^2$ where $\Sigma(q_T/M)$ is universal.
- $d\sigma^{CT}$ regularizes the $q_T = 0$ singularity of $d\sigma^{V+\text{jets}}$: double real and real-virtual NNLO contributions, while (the finite part of) two-loops virtual corrections are contained in \mathcal{H}_{NNLO}^V .
- Final state partons only appear in dσ^{V+jets} so that NNLO IR-safe cuts are included in the NLO computation: observable-independent NNLO extension of the subtraction formalism.

э

Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for $h_1h_2 \rightarrow V + X$ requires:
 - $d\sigma_{LO}^{V+\text{jets}}$ (and $d\sigma_{LO}^{V}$).
 - $\mathcal{H}^{V(1)}$ [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{IQ}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation for $h_1 h_2 \rightarrow V + X$ requires also:

 - $d\sigma_{NLO}^{V+\text{jets}}$. $\mathcal{H}^{V(2)}$: contains the finite-part of the two-loops amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{M,\Omega}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- WH production at NNLO within q_T -subtraction:
 - $d\sigma_{NLO}^{WH+jets}$.
 - $\mathcal{H}^{DY(\tilde{Z})}$ [Catani,Cieri,de Florian,G.F.,Grazzini('12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte

High Precision for Hard processes - Munich - 4/9/2012

Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for $h_1h_2 \rightarrow V + X$ requires:
 - $d\sigma_{IO}^{V+\text{jets}}$ (and $d\sigma_{IO}^{V}$).
 - $\mathcal{H}^{V(1)}$ [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{IQ}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation for $h_1h_2 \rightarrow V + X$ requires also:

 - $d\sigma_{NLO}^{V+\text{jets}}$. $\mathcal{H}^{V(2)}$: contains the finite-part of the two-loops amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{NIO}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- WH production at NNLO within q_T -subtraction:

 - dσ^{WH+jets}_{NLO}.
 H^{DY(2)} [Catani,Cieri,de Florian,G.F.,Grazzini('12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

Associated WH production in NNLO QCD

G.F., Grazzini, Tramontano arXiv:1107.1164

- A NLO calculation for $h_1h_2 \rightarrow V + X$ requires:
 - $d\sigma_{IO}^{V+\text{jets}}$ (and $d\sigma_{IO}^{V}$).
 - $\mathcal{H}^{V(1)}$ [de Florian, Grazzini('01)]: contains the finite-part of the one-loop amplitude $c\bar{c} \rightarrow V$.
 - $d\sigma_{IQ}^{CT}$: depends by the (universal) q_T -resummation coeff. A_1 and B_1 .
- A NNLO calculation for $h_1 h_2 \rightarrow V + X$ requires also:

 - dσ^{V+jets}.
 H^{V(2)}: contains the finite-part of the two-loops amplitude cc̄ → V.
 - $d\sigma_{MCC}^{CT}$: depends by the (universal) q_T -resummation coeff. A_2 and B_2 .
- WH production at NNLO within q_{τ} -subtraction:
 - $d\sigma_{NLO}^{WH+jets}$.
 - $\mathcal{H}^{DY(2)}$ [Catani.Cieri.de Florian, G.F., Grazzini('12)].

Fully-exclusive NNLO calculation, implemented in the parton-level Monte

Carlo code: [G.F., Grazzini, Tramontano('11)]

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

Outline	Associated VH production	VH production at NNLO	Conclusions

Numerical results at the LHC and the Tevatron

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

 p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

• Selection strategy of [Butterworth et al.('08)]: search a large-p_T Higgs boson thorough a collimated *bb* pair decay.

uts:

eptons: $p_T' > 30 GeV$, $|\eta'| < 2.5$, $T^{miss} > 30 GeV$, $p_T^W > 200 GeV$. ets: Cambridge/Aachen algorithm with R

at jet (contain the *bb*) $p_T^3 > 200 Ge$

Jet veto: No other jets with $p_T > 20 GeV$ and $|\eta| < 5$.

• Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).

● Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

• Selection strategy of [Butterworth et al.('08)]: search a large- p_T Higgs boson thorough a collimated $b\bar{b}$ pair decay. Cuts: Leptons: $p_T^l > 30 GeV$, $|\eta^l| < 2.5$, $p_T^{miss} > 30 GeV$, $p_W^W > 200 GeV$. Jets: Cambridge/Aachen algorithm with R=1.2. Fat jet (contain the $b\bar{b}$) $p_T^J > 200 GeV$, $|\eta^J| < 2.5$ Jet veto: No other jets with $p_T > 20 GeV$ and $|\eta| < 5$.

- Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).
- Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

• Selection strategy of [Butterworth et al.('08)]: search a large- p_T Higgs boson thorough a collimated $b\bar{b}$ pair decay. Cuts: Leptons: $p_T' > 30 \, GeV$, $|\eta^I| < 2.5$, $p_T^{miss} > 30 \, GeV$, $p_T^W > 200 \, GeV$. Jets: Cambridge/Aachen algorithm with R=1.2. Fat jet (contain the $b\bar{b}$) $p_T^J > 200 \, GeV$, $|\eta^J| < 2.5$ Jet veto: No other jets with $p_T > 20 \, GeV$ and $|\eta| < 5$.

- Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).
- Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the fat jet at the LHC@14TeV for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

• Selection strategy of [Butterworth et al.('08)]: search a large- p_T Higgs boson thorough a collimated $b\bar{b}$ pair decay. Cuts: Leptons: $p_T^l > 30 \, GeV$, $|\eta^l| < 2.5$, $p_T^{miss} > 30 \, GeV$, $p_T^W > 200 \, GeV$. Jets: Cambridge/Aachen algorithm with R=1.2. Fat jet (contain the $b\bar{b}$) $p_T^J > 200 \, GeV$, $|\eta^J| < 2.5$ Jet veto: No other jets with $p_T > 20 \, GeV$ and $|\eta| < 5$.

- Large negative higher-order corrections: NLO (NNLO) effects -52%/-36% (-6%/-19%), depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$).
- Jet veto strongly affect the higher order corrections ⇒ stability of fixed order calculation challenged.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the dijet system at the Tevatron for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

Outs:

Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2$, $p_T^{miss} > 20 \, GeV$. Jets: k_T algorithm with R=0.4. Exactly two jets (with $p_T > 20 \, GeV$ and $|\eta| < 2$) at least one of them has to be a *b* jet (with $|\eta| < 1$).

Higher-order corrections: NLO (NNLO) effects from +13% to +30% (from -1% to +4%) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about ±1% both at NLO and NNLO.

The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the dijet system at the Tevatron for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

Outs:

Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2$, $p_T^{miss} > 20 \, GeV$. Jets: k_T algorithm with R=0.4. Exactly two jets (with $p_T > 20 \, GeV$ and $|\eta| < 2$) at least one of them has to be a *b* jet (with $|\eta| < 1$).

• Higher-order corrections: NLO (NNLO) effects from +13% to +30% (from -1% to +4%) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.

The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

 p_T spectra of the dijet system at the Tevatron for $m_H = 120 \, GeV$ at LO (dots), NLO (dashes) and NNLO (solid).

Outs:

Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2$, $p_T^{miss} > 20 \, GeV$. Jets: k_T algorithm with R=0.4. Exactly two jets (with $p_T > 20 \, GeV$ and $|\eta| < 2$) at least one of them has to be a *b* jet (with $|\eta| < 1$).

- Higher-order corrections: NLO (NNLO) effects from +13% to +30% (from -1% to +4%) depending on the scale choice (factor two around $\mu_F = \mu_R = m_W + m_H$). The scale dependence is at the level of about $\pm 1\%$ both at NLO and NNLO.
- The shape of the distribution is stable against perturbative corrections. Perturbative expansion under good control.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

$pp ightarrow ZH(ightarrow 2I bar{b})$

 p_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125 GeV$ at NLO and NNLO with and without the jet veto.

• $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.

• Cuts (we follow CMS analysis): Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2.5$, $75 < m_{ll} < 105 \, GeV$, $p_T^{ll} > 100 \, GeV$. Jets: anti- k_T algorithm with R=0.5. Two *b*-jets (with $p_T > 20 \, GeV$, $|\eta| < 2.5$ and $p_T^{bb} > 100 \, GeV$). Jet veto: extra jet radiation is vetoed if

 $p_T > 20 GeV$ and $|\eta| < 2.5$.

 Higher-order corrections: NLO (NNLO) effects: without jet-veto +20% (+14%); with jet-veto -20% (+14%).

Effect of the jet-veto: -33% both at NLO and NNLO.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes - Munich - 4/9/2012

NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

$pp ightarrow ZH(ightarrow 2I bar{b})$

 p_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125 GeV$ at NLO and NNLO with and without the jet veto.

• $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.

• Cuts (we follow CMS analysis): Leptons: $p_T^l > 20 \, GeV$, $|\eta^l| < 2.5$, $75 < m_{II} < 105 \, GeV$, $p_T^{II} > 100 \, GeV$. Jets: anti- k_T algorithm with R=0.5. Two *b*-jets (with $p_T > 20 \, GeV$, $|\eta| < 2.5$ and $p_T^{bb} > 100 \, GeV$). Jet veto: extra jet radiation is vetoed if

 $p_T > 20 GeV$ and $|\eta| < 2.5$.

 Higher-order corrections: NLO (NNLO) effects: without jet-veto +20% (+14%); with jet-veto -20% (+14%).

Effect of the jet-veto: -33% both at NLO and NNLO.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

NEW: associated ZH production at NNLO:

G.F., Grazzini, Tramontano (in preparation)

$pp ightarrow ZH(ightarrow 2I bar{b})$

 p_T spectra of the $b\bar{b}$ system at the LHC for $m_H = 125 GeV$ at NLO and NNLO with and without the jet veto.

• $gg \rightarrow HZ$ top-loop $\sim g^2 \lambda_t^2 \alpha_S^2$ (non DY-like) corrections included.

- Cuts (we follow CMS analysis): Leptons: $p_T^l > 20 \text{ GeV}$, $|\eta^l| < 2.5$, $75 < m_{ll} < 105 \text{ GeV}$, $p_T^{ll} > 100 \text{ GeV}$. Jets: anti- k_T algorithm with R=0.5. Two *b*-jets (with $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$ and $p_T^{bb} > 100 \text{ GeV}$). Jet veto: extra jet radiation is vetoed if $p_T > 20 \text{ GeV}$ and $|\eta| < 2.5$.
- Higher-order corrections: NLO (NNLO) effects: without jet-veto +20% (+14%); with jet-veto -20% (+14%).

Effect of the jet-veto: -33% both at NLO and NNLO.

Giancarlo Ferrera – Università di Milano

High Precision for Hard processes – Munich – 4/9/2012

Yellow Report II:arXiv:1201.3084

Distributions in $p_{T,H}$ for $pp \rightarrow WH \rightarrow I\nu H$ (NNLO QCD + NLO EW) and for $pp \rightarrow ZH \rightarrow II/\nu\nu H$ (NLO QCD + NLO EW) at $\sqrt{s} = 7$ TeV. Boosted setup: $|\eta_l| < 2.5$, $p_{T,l} > 20$ GeV, $p_{T,\nu} > 25$ GeV, $p_{T,H} > 200$ GeV, $p_{T,W/Z} > 190$ GeV.

We produced similar results at $\sqrt{s} = 8 TeV$.

Giancarlo Ferrera – Università di Milano

Conclusions

- Calculation of NNLO QCD corrections to VH production in hadron collision using the q_T -subtraction formalism, included in a fully-exclusive parton-level Monte Carlo code.
- NNLO corrections can be important:

large and negative: $\sim -20\%$ for the *WH* fat-jet analysis at the LHC@14 *TeV* when a jet veto is applied; sizeable for the CMS analysis at the LHC; moderate for the *WH* Tevatron analysis.

• Outlook/Work in progress:

Public release of the parton-level numerical code. Inclusion of the higher-order QCD correction to $H \rightarrow b\bar{b}$ decay. Extension to the ZH production. Inclusion of $H \rightarrow WW/ZZ \rightarrow 2I2\nu/4I$ decay. Comparison with parton-shower Monte Carlo predictions. Study of the NNLO uncertainty band: first reliable estimate of perturbative uncertainty. Giancardo Ferrera – Università di Milano High Precision for Hard processes – Munich – 4/9/2012