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State of the Art @ NLO

The list of accomplished NLO calculations is steadily growing . . .

pp → W+W−bb̄ [Denner, Dittmaier, Kallweit, Pozzorini ‘11]
[Bevilacqua, Czakon, van Hameren, Papadopoulos, Worek ‘11]

pp → tt̄bb̄ [Bredenstein, Denner, Dittmaier, Pozzorini ‘08, ‘09, ‘10]
[Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘09]

pp → tt̄jj [Bevilacqua, Czakon, Papadopoulos, Pittau, Worek ‘10]
pp → tt̄tt̄ [Bevilacqua, Worek ‘12]

pp → W±W± + 2j [Melia, Melnikov, Rontsch, Zanderighi ‘10]
[Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano ‘12]

pp → W± + 3j [Ellis, Melnikov, Zanderighi ‘09]
pp → γ∗/Z/W± + 3j [Berger, Bern,Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower,Maître ‘09, ‘10]

pp → Z/W± + 4j [Berger, Bern,Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower,Maître ‘10, ‘11]
pp → 4j [Bern, Diana, Dixon, Febres Cordero, Hoeche, Kosower, Ita, Maître, Ozeren ‘11]
pp → bb̄bb̄ [Greiner, Guffanti, Reiter, Reuter ‘11]
pp → Wγγ j [Campanario, Englert, Rauch, Zeppenfeld ‘11]

e+e−
→ 7j [Becker, Goetz, Reuschle, Schwan, Weinzierl ‘11]

Various techniques have been used to perform the calculations.
Each approach has its specific advantages and disadvantages.
What we want is high speed, numerical stability and wide applicability
with minimal human interaction.
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Diagrammatic approach and Colour factorisation

Tree and one-loop amplitudes are handled as sums of Feynman diagrams

M =
∑

d

M(d), δM =
∑

d′

δM(d′)

Colour and helicity summed scattering probability densities

W =
∑

hel,col

|M|2, δW =
∑

hel,col

2 Re(M∗δM)

Diagrams factorise in colour factors and colour stripped amplitudes

M(d) = C(d)A(d), δM(d′) = C(d′)δA(d′)

Algebraic colour reduction and summation only once per process

Feynman Diagrams ⇒ colour sums at zero cost
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From Loop Amplitudes to Scalar Integrals

pN

p1 q

p2 p3

p4

p5

. . .
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ddq
N (q)

D0 D1 . . . DN−1
, Di =

(

q +

i
∑

ℓ=0

pℓ

)2

−m2
i

Reduce amplitude

to a linear combination

of scalar basis integrals

On-shell

methods

Tensor integral

reduction

∫

ddq

[

∑

i1

ai1

Di1

+
∑

i1,i2

bi1i2

Di1Di2

+
∑

i1,i2,i3

ci1i2i3

Di1Di2Di3

+
∑

i1,i2,i3,i4

di1i2i3 i4

Di1Di2Di3Di4

]

Tensor integral reduction combined with off-shell current recursion
can compete with on-shell methods in n-gluon scattering
with up to 10 gluons. [van Hameren ‘09]
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Tensor Integral Reduction

Separate tensor coefficients from tensor integrals.

A =

R
∑

r=0

Nµ1...µr

r ·
∫

ddq
qµ1 . . . qµr

D0 D1 . . . DN−1

Covariant decomposition in tensor monomials built from gµν and p
µ
i .

Reduce tensor integrals to scalar basis integrals. [Melrose; Passarino,

Veltman; Denner, Dittmaier; Binoth et al.; Fleischer, Riemann; & many others]

Numerically unstable in pathological phase space regions,
but the instabilities are understood and can be cured
(e. g. expansion in small Gram determinants [Denner, Dittmaier])

We use Collier, a private library by Denner and Dittmaier with an
interface by Hofer to build a tensor component representation.

“Traditional” approach: construct Nµ1...µr

r analytically in d = 4 − 2ǫ.
Huge expressions & expensive algebraic simplifications limit applicability.

Open Loops: Recursive numerical construction of Nµ1...µr

r in d = 4
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OPP reduction & Tree Generator

OPP directly extracts coefficients of the scalar basis integrals.

Need multiple numerical evaluations of N (q) for complex q.

Public implementations: CutTools [Ossola, Papadopoulos, Pittau]

Public implementations: Samurai [Mastrolia, Ossola, Reiter, Tramontano]

N (q) can be calculated by a generator for tree-level amplitudes.

Numerical instabilities are yet to be understood → quadruple precision

Wave functions wα of “sub-trees” are 4-tuples (for the spinor/Lorentz
index) which are built by recursivly connecting lower sub-trees with
vertices and propagators, starting from external legs.

i =
j

k
wβ(i) =

X
β
γδ

p2
i − m2

i

wγ(j)w δ(k)

external lines are not depicted X
β
γδ

describes the interaction of i , j , k
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From Tree Structures to Open Loops

A one-loop diagram is an ordered set of sub-trees In = {i1, . . . , in}

q 0

1

n−1

i1 i2

in-1in

cut D0−−−−−→ N β
α (In; q) =

1

n−1

i1 i2

in-1in

α

β ≡
β

α
In

Connect sub-trees along the loop to build the numerator N = Nα
α

β

α
In =

β

α

in

In−1 N β
α (In; q) = X

β
γδ N γ

α (In−1; q) w δ(in)

Separation of the loop momentum q . . .

N β
α (In; q) =

n
∑

r=0

N β
µ1...µr ;α(In) qµ1 . . . qµr , X

β
γδ = Y

β
γδ + qνZ

β
ν;γδ

. . . leads to a recursion formula for the coefficients N β
µ1...µr ;α.
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Open Loops Recursion

“Open loops” polynomials in q can be built recursively

N β
µ1...µr ;α(In) =

[

Y
β
γδ N γ

µ1...µr ;α(In−1) + Z
β
µ1;γδ

N γ
µ2...µr ;α(In−1)

]

w δ(in)

⇒ retains full loop momentum dependence.

Once the polynomials are known, multiple evaluations of

N (q) =
∑n

r=0 Nα
µ1...µr ;αqµ1 . . . qµr are very fast. ⇒ boosts OPP

On the other hand Nα
µ1...µr ;α are the coefficients of the tensor integrals.

Open loops can be interfaced with both tensor integrals

and OPP in a straight forward way.

β

α

in-1in

In−2

β

α

in-1in

In−2

Recycling:

Lower-point open-loops can be
shared between diagrams if the
cut it put appropriately.
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Helicity Summation

Once a tensor integral has been calculated, it can be reused in all
diagrams with the same set of denominators.

The same degree of optimisation can be achieved for OPP reduction:
Perform interference with the Born amplitude M, colour and helicity

sums and the sum over the set of diagrams ∆ with identical denominator
structure on the level of open-loop coefficients before OPP reduction.

δW∆ =
∑

hel,col

2 Re

[

M∗

(

∑

d′∈∆

δM(d′)
)

]

δW∆
µ1...µR

=
∑

hel,col

2 ×
[

M∗

(

∑

d′∈∆

C(d′)N (d′)
µ1...µR

)

]

Unpolarised, colour summed numerator N∆(q) = δW∆
µ1...µR

qµ1 . . . qµR

minimises the number of OPP calls and leads to

very efficient helicity sums.
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Implementation

User input: process definition file

FeynArts [Hahn] generates Feynman diagrams.

Mathematica organises recursion and recycling,
reduces colour factors and generates Fortran 90 code.

Numerical routines for QCD corrections to Standard Model
processes implemented in Fortran 90.

Symmetrising N β
µ1...µr ;α keeps the number of components manageable.

Rational terms R2 are calculated using the tree generator.
[Draggiotis, Garzelli, Malamos, Papadopoulos, Pittau ‘09, ‘10; Shao, Zhang, Chao ‘11]

No user interaction required: process definition → compiled library.

Consistency checks

UV/IR cancellations and Ward identities

Tensor integrals vs. OPP reduction

“pseudo-tree”: fix loop momentum and compare to tree generator
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Speed and Flexibility

Performance studies for all
non-trivial processes of the
Les Houches priority list
(Intel i5-750, single thread,

compiled with ifort 10.1).

tcode = code generation
& compilation (lots of

room for improvement here);

size of the process library;

tTI = time for a single phase
space point using tensor
integrals (unpolarised,

single helicity for t/W );

tOPP = the same with
tOPP = CutTools

Process tcode/s size/MB tTI/ms

uū → tt̄ 2.2 0.1 0.27
uū → W+W− 7.2 0.1 0.28
ud̄ → W+g 4.2 0.1 0.43
gg → tt̄ 5.4 0.2 1.2
uū → tt̄g 13 0.4 4.2

uū → W+W−g 40 0.4 3.6
ud̄ → W+gg 24 0.5 6.7
gg → tt̄g 53 1.2 23
uū → tt̄gg 236 3.6 88

uū → W+W−gg 382 2.5 96
ud̄ → W+ggg 366 4.2 191
gg → tt̄gg 3005 16 725

number of loop diagrams

t O
P
P
/t

T
I

104103102101

2

1

gg → tt̄ + n g

uū → tt̄ + n g

ud̄ → W+g+n g

uū → W+W−+ n g
t T

I
[m

s]

1000

100

10

1

0.1
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Timing studies

single helicity: time for tensor reduction ≫ time for coefficients

full helicity sum: time for tensor reduction ≈ time for coefficients

For 2 → 4 processes

full helicity sums cost only a factor ∼ 2 (here: instead of 16)

tensor integral reduction and OPP performance is similar

polarised unpolarised

gg → tt̄

gg → tt̄g

gg → tt̄gg
20 40 60 80 100 20 40 60 80 100

qq̄ → tt̄

qq̄ → tt̄g

qq̄ → tt̄gg
20 40 60 80 100 20 40 60 80 100

fractions of total runtime for scalar integrals, tensor reduction, coefficients
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Numerical Stability

The numerical precision can be estimated by a scaling test:

mi → ξmi , p
µ
i → ξpµ

i leads to δW → δW ′ = ξK δW

⇒ precision ∆ =

∣

∣

∣

∣

ξ−K δW ′

δW − 1

∣

∣

∣

∣

, rsp. d = − log10 ∆ decimal digits.

Sample of 106

homogeniously
distributed phase
space points;
√

s = 1 TeV

pT > 50 GeV

∆Rij > 0.5

using tensor integrals,

double precision

2 → 4

2 → 3

2 → 2

gg → tt̄ +ng

uū → tt̄ +ng

ud̄ → W+g +ng

uū → W+W− +ng

maximal precision ∆

fr
ac
ti
on

of
ev
en
ts

10010−410−810−1210−16

100

10−1

10−2

10−3

10−4

10−5

10−6
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Checks Against Independent Code

In addition to internal consistency checks we perfom
comparisons against an independent in-house generator
for loop amplitudes.

Due to the high performance of both codes the numerical agreement can
be easily checked for 106 phase space points.
⇒ Extensive comparisons across the whole phase space.

The numerical agreement is checked pointwise and compared to the
precision delivered by the individual codes.

Over 40 processes with 4 or 5 external

particles successfully verified.
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Numerical Agreement with Independent Code

Stability and agreement of Open Loops and independent code

Processes ud̄ → e+ν̄e g and ud̄ → e+ν̄e gg ,

106 homogeneously distributed phase space points.

Agreement

Algebraic

OpenLoops

u d̄ → e+νe g

maximal precision ∆

fr
ac
ti
on

of
ev
en
ts

10−410−810−1210−16

100

10−1

10−2

10−3

10−4

10−5

10−6

Agreement

Algebraic

OpenLoops

u d̄ → e+νe g g

maximal precision ∆

fr
ac
ti
on

of
ev
en
ts

10−410−810−1210−16

100

10−1

10−2

10−3

10−4

10−5

10−6

Open Loops appears to be slightly more stable.

The numerical agreement shows the expected behaviour:
within 1 digit of the less stable code.



Basics The Open Loops Algorithm Towards LHC Phenomenology with Open Loops

Automation of NLO Calculations

Combine Open Loops with multi-purpose Monte Carlo programs

aMC@NLO, POWHEG, Sherpa:

NLO matching with shower & hadronisation,

IR subtraction, real emission, phase space integration.

Open Loops provides an easy to use API to directly access
initialisation and matrix element routines.

Control settings via the user interface of the Monte Carlo program.

Make NLO calculations and analysis

as simple as LO calculations.
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Open Loops + Sherpa

Interfacing between Sherpa and Open Loops is done

Use Open Loops to generate and compile process libraries.

Use standard Sherpa run cards with a few new options.

Performs some sanity checks and optional consistency checks
(e. g. pole cancellations, forced parameter values).

Validation is in progress.

Libraries for a wide range of processes

will be public in the near future.
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e
+
ν̄e and e

+
e
− + jets with OpenLoops + Sherpa

Preliminary results for e+ν̄e + jets and e+e−+ jets total cross sections

Process σ [pb] σB/σ σR/σ σV/σ t [min] tB/t tR/t tV/t

e+ν̄e 6082 ± 0.8% 92% 5% 4% 0.1 36% 27% 36%
e+ν̄e j 1057 ± 1.0% 98% -5.3% 7% 4.6 9% 84% 7%
e+ν̄e jj 294 ± 1.0% 115% -44% 29% 640 1% 80% 19%

Process σ [pb] σB/σ σR/σ σV/σ t [min] tB/t tR/t tV/t

e+e− 1190 ± 0.7% 95% 5% 0.3% 0.1 31% 31% 38%
e+e−j 202 ± 1.1% 100% -7% 7% 23 5% 85% 10%
e+e−jj 54.1 ± 1.1% 116% -46% 30% 2908 1% 66% 33%

(B = Born + I-operator; R = real corrections − dipoles; V = virtual corrections; αNagy = 1)

Nice agreement with MadLoop (thanks to R. Frederix for
updated results). [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau ‘11]

Less than 11 hours for pp → Wjj (1%) on a single i5-750 CPU core.

Real corrections (from Sherpa with Amegic) dominates the runtimes.
Significant improvements are expected here in the future.
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Summary

Open loops is a new algorithm for one-loop amplitudes

It uses a diagrammatic, tree-like recursion for loop momentum
polynomials (instead of fixed loop momenta)

Process definition → compact code within seconds/minutes

Interfaced with tensor integral and OPP reduction

Very fast: 0.1–1 s/PS-point for colour & helicity summed 2 → 4

Numerically stable when using tensor integrals

OpenLoops+Sherpa: NLO phenomenology for LHC

Fully automated

NLO predictions become as easy as LO predictions
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