# Automated NLO calculations with **GoSam**

Gionata Luisoni

gionata.luisoni@durham.ac.uk

Institute for Particle Physics Phenomenology University of Durham Max-Planck-Institut für Physik München

In collaboration with:

G.Cullen, N. Greiner, G.Heinrich, P.Mastrolia, G.Ossola, T.Reiter, F. Tramontano

GoSam release: arXiv:1111.2034 [hep-ph] | http://gosam.hepforge.org/





HP2: High Precision for Hard Processes München, 04.09.2012

### •• Motivation

- Progresses in NLO calculation:
  - pp  $\longrightarrow W + 3$  jets
  - pp  $\longrightarrow t\bar{t}b\bar{b}$
  - pp  $\longrightarrow Z(\gamma) + 3$  jets
  - pp  $\longrightarrow t\bar{t}jj$
  - pp  $\longrightarrow W^+W^-b\bar{b}$
  - $e^+e^- \longrightarrow 5$  jets
  - pp  $\longrightarrow W^+W^+jj$
  - pp  $\longrightarrow Z(\gamma) / W + 4$  jets Blackhat (11)
  - pp  $\longrightarrow b\bar{b}b\bar{b}$
  - pp  $\longrightarrow W^+W^-jj$
  - $pp \longrightarrow 4$  jets







Blackhat (09) / Rocket (09)

Blackhat (10)

Rocket (10)

Rocket (10)

Blackhat (11)

HELAC-NLO (10)

Golem / Samurai (11)

Rocket (11) / GoSam (12)

Denner-Dittmaier (09) / HELAC-NLO (09)

Denner-Dittmaier (10) / HELAC-NLO (10)

### •• Motivation

### Progresses in NLO calculation:

- pp  $\longrightarrow W + 3$  jets
- pp  $\longrightarrow t\bar{t}b\bar{b}$
- pp  $\longrightarrow Z(\gamma) + 3$  jets
- pp  $\longrightarrow t\bar{t}jj$
- pp  $\longrightarrow W^+W^-b\bar{b}$
- $e^+e^- \longrightarrow 5$  jets
- pp  $\longrightarrow W^+W^+jj$
- pp  $\longrightarrow Z(\gamma) / W + 4$  jets
- pp  $\longrightarrow b\bar{b}b\bar{b}$
- pp  $\longrightarrow W^+W^-jj$
- pp  $\longrightarrow 4$  jets





Denner-Dittmaier (09) / HELAC-NLO (09) Blackhat (10) HELAC-NLO (10) Denner-Dittmaier (10) / HELAC-NLO (10)

- Rocket (10)
- Rocket (10)
- Blackhat (11)
  - Golem / Samurai (11)
  - Rocket (11) / GoSam (12)

Blackhat (09) / Rocket (09)

Blackhat (11)

Key Concept

## • Automation in NLO calculations

• Different ingredients of a NLO calculation have also different levels of automation according to their complexity:



- Virtual corrections
- Automatized recently:
  - FEYNARTS/FORMCALC/LOOPTOOLS (public)

[Hahn et al.]

- HELAC-NLO (public) [Bevilacqua, Czakon, van Hameren, Papadopoulos, Pittau, Worek, 11]
- MadLoop [Hirschi,Fr
- [Hirschi,Frederix,Frixione,Garzelli, Maltoni,Pittau ,11]
  - OpenLoops [Cascioli, Maierhöfer, Pozzorini, 12]
- GoSam (public) [Cullen, Greiner, Heinrich, GL, Mastrolia, Ossola, Reiter, Tramontano, 11]

Dedicated programs also involve high level of automation: Denner-Dittmaier et al., VBFNLO (public), MCFM (public), NGLUON (public), BLACKHAT, ROCKET.

## •• NLO evolution

- Evolution from collection of pre-coded processes...
   ... to generation of full NLO processes by the user "on the fly"!
- Possible thanks to pioneering works:
  - improvements on the computation of tensor integrals, [Binoth et al. GOLEM95; Denner, Dittmaier et al.]
  - application of unitarity to the computation of the one loop amplitudes, [Bern, Dixon, Kosower; Britto, Cachazo, Feng]
  - reduction at the integrand level.
     [Ossola, Papadopoulos, Pittau; Ellis, Giele, Kunszt, Melnikov]
- Automation allows
  - Self-organization / Process-independent framework / Avoid human mistakes / Focus on Pheno





## •• The GoSam Project: phylosophy



Golem (General One Loop Evaluator of Matrix elements)

Samurai (Scattering Amplitudes from Unitarity based Reduction At Integrand level)

### An automated amplitude generation based on Feynman diagrams

- Based upon:
  - Algebraic generation of D-dimensional integrands via Feynman diagrams
  - Reduction at the integrand level via D-dimensional extension of the OPP method
  - Generation on the fly of the full rational term





### •• The GoSam Project: goals

- Main targets:
  - Provide an automated tool for stable evaluation of oneloop matrix elements
  - **Be general** and model independent (QCD, EW, MSSM, ...)
  - Interface with existing tools (MadEvent, Sherpa, POWHEG BOX, ...)
  - Build upon open source tools only (next slide)
  - Support open standards (for interfacing)





### •• The GoSam Project: the codes

### **GoSam Project**

GoSam: Python package to write code (fortran95)

### Code generation

- Diagram generation:
   QGRAF [Nogueira 92]
- Algebra:

FORM [Vermaseren 91] SPINNEY [Cullen, Koch-Janusz, Reiter 10]

• Code generator:

HAGGIES [Reiter 09]

#### Yellow codes distributed separately







### Generated code execution

• Loop integral reduction:

SAMURAI [Mastrolia, Ossola, Reiter, Tramontano 10]

GOLEM95 [Binoth, Cullen, Guillet, Heinrich, Pilon, Reiter 08]

PJFRY [Yundin]

• Scalar integral evaluation:

AVHOLO [van Hameren]

QCDLOOP [Ellis, Zanderighi]

GOLEM95C [Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers 11]

#### All codes in gosam-contrib package

## •• 3-Steps to the Loop Amplitude







## •• Reduction methods

### SAMURAI

[Mastrolia, Ossola, Reiter, Tramontano 10]

Reduction method can be choosen at runtime

### Tensorial integrand-level reconstruction

[Heinrich, Ossola, Reiter, Tramontano 10]

### with

- GOLEM95C [Binoth, Cullen, Guillet, Heinrich, Kleinschmidt, Pilon, Reiter, Rodgers 11]
- SAMURAI [Mastrolia, Ossola, Reiter, Tramontano 10]
- PJFry [Yundin]





### •• Reduction: strategies



### •• Reduction: strategies



## •• A Walk through GoSam...

- GoSam as a standalone code
- Interfacing with an external Monte Carlo program:
  - The BLHA-interface [Comput.Phys.Commun. 181 (2010) 1612-1622, arXiv:1001.1307 [hep-ph]]
     Sherpa | Powheg Box | ...
    - An example with Sherpa/Powheg Box
    - The GoSam+Sherpa process packages





### GoSam standalone: input card

### Preparation of the input card "myprocess.rc":







### GoSam standalone: input card

### Preparation of the input card "myprocess.rc" (continued):

#### program options ####

extensions=samurai, golem95, dred

```
# abbrev.level=helicity # group , diagram
# abbrev.limit=0
```

form.bin=tform form.tempdir=/tmp fc.bin=gfortran -O2

```
golem95.fcflags=-I${HOME}/include/golem95
golem95.ldflags=-L${HOME}/lib/ -lgolem
```

Several other extension and options available. For further details check our user manual: http://www.hepforge.org/archive/gosam/gosam-1.0.pdf





### •• GoSam standalone: generation/compilation

### Generate code and compile

\$ gosam.py myprocess.rc python code generates fortran95 code

\$ make source

\$ make compile

Form & Haggies process diagrams to write code fortran95 code in compiled

| ggttH : makevirt                                                                                | _ O X    |
|-------------------------------------------------------------------------------------------------|----------|
| File Edit View Scrollback Bookmarks Settings Help                                               |          |
| luisonig@D22:ggttH\$ ./makevirt                                                                 | <u>^</u> |
| > Creating code for virtual part                                                                |          |
| > Generating code for amplitudes                                                                |          |
| make -I Makelile.Source Source                                                                  |          |
| make[1]. Entering directory /Seratch/luisonig/GoSam_Processes/tth/ggtH/th/vitual/doc'           |          |
| make[2]: Nothing to be done for `source'.                                                       |          |
| make[2]: Leaving directory `/scratch/luisonig/GoSam Processes/ttH/ggttH/ttH virtual/doc'        |          |
| make[2]: Entering directory '/scratch/luisonig/GoSam Processes/ttH/ggttH/ttH virtual/common'    |          |
| FORM is generating color.txt                                                                    |          |
| 0.01 sec + 0.13 sec: 0.15 sec out of 0.10 sec                                                   |          |
| haggies is generating color.f90                                                                 |          |
| haggies is generating model.f90                                                                 |          |
| FORM is generating version.out                                                                  |          |
| 0.00 sec + 0.00 sec: 0.00 sec out of 0.00 sec                                                   |          |
| haggies is generating version.f90                                                               |          |
| make[2]: Leaving directory `/scratch/luisonig/GoSam_Processes/ttH/ggttH/ttH_virtual/common'     |          |
| make[2]: Entering directory '/scratch/luisonig/GoSam_Processes/ttH/ggttH/ttH_virtual/helicity0' |          |
| Form is processing tree diagram 1 @ Helicity 0                                                  |          |
| 0.02 Sec + 0.11 Sec: 0.13 Sec out of 0.08 Sec                                                   |          |
| Form is processing tree diagram 2 @ Helicity 0                                                  |          |
| O DI Sec VOII Sec ULI Sec OLI DI UN SEC                                                         |          |
| 0.02 sec + 0.06 sec 0.09 sec out of 0.06 sec                                                    |          |
| Form is processing tree diagram 4.0 Helicity 0                                                  |          |
|                                                                                                 |          |





### •• GoSam standalone: documentation

- Check produced code with automatic generated documentation before the full generation/run
  - Documentation contains information about
    - the generated helicities
    - the colour basis
  - Loop diagrams are grouped into sets of diagrams which share loop propagators



luisonig

2012-02-19 (22:10:59)

#### Abstract

This process consists of 8 tree-level diagrams and 160 NLO diagrams. Golem has identified 15 groups of NLO diagrams by analyzing their oneloop integrals.

| Index              | 1 | 2 | 3 | 4 | 5 |
|--------------------|---|---|---|---|---|
| 0                  | _ | _ | 0 | _ | _ |
| 1                  | _ | _ | 0 | — | + |
| 2                  | _ | _ | 0 | + | _ |
| 3                  | _ | _ | 0 | + | + |
| 4                  | _ | + | 0 | _ | _ |
| 5                  | _ | + | 0 | _ | + |
| 6                  | _ | + | 0 | + | _ |
| 7                  | _ | + | 0 | + | + |
| $8 \rightarrow 4$  | + | _ | 0 | _ | _ |
| $9 \rightarrow 5$  | + | _ | 0 | _ | + |
| $10 \rightarrow 6$ | + | _ | 0 | + | _ |
| $11 \rightarrow 7$ | + | _ | 0 | + | + |
| 12                 | + | + | 0 | _ | _ |
| 13                 | + | + | 0 | _ | + |
| 14                 | + | + | 0 | + | _ |
| 15                 | + | + | 0 | + | + |



### •• GoSam standalone: documentation

J

5.4 Group 3 (5-Point)

General Information

The maximum effective rank in this group is 4.

$$r_{1} = -k_{2} + k_{5}, \quad m_{1} = m_{t} \\ r_{2} = -k_{2} \\ r_{3} = 0 \\ r_{4} = -k_{4}, \quad m_{4} = m_{t} \\ r_{5} = -k_{3} - k_{4}, \quad m_{5} = m_{t} \\ S = \begin{pmatrix} S_{1,1} & 0 & S_{1,3} & S_{1,4} & S_{1,5} \\ 0 & 0 & 0 & S_{2,4} & S_{2,5} \\ S_{3,1} & 0 & 0 & 0 & S_{3,5} \\ S_{4,1} & S_{4,2} & 0 & S_{4,4} & S_{4,5} \\ S_{5,1} & S_{5,2} & S_{5,3} & S_{5,4} & S_{5,5} \end{pmatrix} \\ S_{1,3} = -2m_{t}^{2} \\ S_{1,3} = -2m_{t}^{2} \\ S_{1,5} = -2m_{t}^{2} \\ S_{2,4} = s_{51} - s_{23} - s_{34} + m_{H}^{2} \\ S_{2,5} = s_{51} - m_{t}^{2} \\ S_{3,5} = -m_{t}^{2} + s_{44} \\ S_{4,4} = -2m_{t}^{2} \\ S_{4,5} = -2m_{t}^{2} \\ S_{4,5} = -2m_{t}^{2} \\ S_{5,5} = -2m_{t}^{2} \\ \end{pmatrix}$$

Sa≥ft

PLANCK GESELLSCHAFT

G.Luisoni, 4<sup>th</sup> September 2012

Loop diagrams are grouped into sets of diagrams which share loop-propagators. A loop integral can be written as

$$\int \frac{\mathrm{d}^n k}{i\pi^{\frac{n}{2}}} \frac{\mathcal{N}(q)}{\prod_{j=1} N\left[(k+r_j)^2 - m_j^2 + im_j\Gamma_j + i\delta\right]} \tag{16}$$

For each group we list  $r_j$ ,  $m_j$  and  $\Gamma_j$ . For  $m_j$  and  $\Gamma_j$  only non-vanishing symbols are listed. Furthermore, we give the matrix S which is defined as

$$S_{\alpha\beta} = (r_{\alpha} - r_{\beta})^2 - m_{\alpha}^2 + im_{\alpha}\Gamma_{\alpha} - m_{\beta}^2 + im_{\beta}\Gamma_{\beta}.$$
 (17)



### GoSam standalone: code ready to use

#### Contributions divided in directories by helicity



## • Example: $pp \rightarrow Ht\bar{t}$

Generation time: 1h 20min

Compilation time: 3h 6min

#### Time for 1 PS point: 280 ms

Machine: Intel Core Quad CPU Q6600 @ 2.4 GHz / 6 GB RAM

Process generated in DRED and converted to CDR at runtime

|                | E                  | $p_x$               | $p_{y}$             | $p_z$               |  |
|----------------|--------------------|---------------------|---------------------|---------------------|--|
| u/g            | 250.0              | 0.0                 | 0.0                 | 250.0               |  |
| $\bar{u}/g$    | 250.0              | 0.0                 | 0.0                 | -250.0              |  |
| H              | 136.35582793693018 | 15.133871809486299  | 27.986733991031045  | 26.088703626953386  |  |
| t              | 181.47665951104506 | 20.889486679044587  | -50.105625289561424 | 14.002628607367491  |  |
| $\overline{t}$ | 182.16751255202476 | -36.023358488530903 | 22.118891298530357  | -40.091332234320859 |  |

| parameters                                        | result $gg \to t\bar{t}H$          |                                          |  |  |
|---------------------------------------------------|------------------------------------|------------------------------------------|--|--|
| $\frac{1}{\sqrt{5}}$ 500 0 $\frac{1}{\sqrt{5}}$ 5 | GoSam                              | Ref. [39]                                |  |  |
| $\mu$ $m_t$ $N_{fh}$ 1                            | $a_0 \cdot 10^5$ 6.127399805961155 | 6.127400074872043                        |  |  |
| $m_t = 172.6$ $\alpha_s = 0.1076395107858145$     | $c_0/a_0$ 9.006680638719660        | 9.006680836410272                        |  |  |
| $m_H$ 130 $v$ 246.21835258713082                  | $c_{-1}/a_0$ 2.986347664537282     | 2.9863477301662056<br>-6.000000131659877 |  |  |

Comparison with MadLoop [Hirschi, Frederix, Frixione, Garzelli, Maltoni, Pittau 11]



## GoSam: further tested calculations

- $\bigcirc q\bar{q} \longrightarrow b\bar{b}b\bar{b}$
- $\bullet \ g\bar{g} \longrightarrow b\bar{b}b\bar{b}$
- $\ \, \circ \ \, q\bar{q} \longrightarrow t\bar{t}b\bar{b}$
- $\bullet \ g\bar{g} \longrightarrow t\bar{t}b\bar{b}$
- $\bullet \ u\bar{d} \longrightarrow W^+ ggg$
- $\bullet \ u\bar{u} \longrightarrow H t\bar{t}$
- $\bullet \ g\bar{g} \longrightarrow H t\bar{t}$
- $u\bar{d} \longrightarrow W + s\bar{s} \longrightarrow e^+\nu_e s\bar{s}$
- $u\bar{d} \longrightarrow W + gg \longrightarrow e^+\nu_e gg$
- $\bullet \ d\bar{d} \longrightarrow Z \, gg \longrightarrow e^+e^-gg$





•  $u\bar{d} \longrightarrow W + b\bar{b} \longrightarrow e^+\nu_e b\bar{b}$  with massive b's •  $ud \longrightarrow W + g \longrightarrow e^+ \nu_e g$  EW corrections  $\bullet e^+e^- \longrightarrow Z \longrightarrow d\bar{d}q$ •  $e^+e^- \longrightarrow Z \longrightarrow b\bar{b}q$  with massive b's •  $u\bar{d} \longrightarrow W^+W^+ s\bar{c} \longrightarrow e^+\nu_e\mu^+\nu_\mu s\bar{c}$  $\bullet u\bar{u} \longrightarrow W^+W^+ c\bar{c} \longrightarrow e^+\nu_e\mu^+\nu_\mu c\bar{c}$  $\bullet u\bar{d} \longrightarrow W^+W^+ \bar{s}c \longrightarrow e^+ \overline{\nu_e \mu^+ \nu_\mu \bar{s}c}$ plus a large number of 2 to 2 processes

## • GoSam: interface with MC

- GoSam supports the Binoth-Les-Houches-Accord (BLHA) standards to interface with Monte Carlo generators:
  - Monte Carlo program: Born / real corr. / sub. terms
  - One-loop Program (OLP): virtual corr.
  - Pre-runtime comunication via "order" and "contract" files
  - At runtime:
    - OLP\_Start()
    - OLP\_EvalSubProcess()

#### [arXiv:1001.1307 [hep-ph]]







## •• BLHA-interface: order & contract



Dp. Dg > tt

X. PLANCK CESELLSCHAF

### •• In practice: GoSam+ Sherpa

[In collaboration with M.Schonherr]

- Few steps needed to compute e.g. Z+1 jet @NLO:
  - <u>Prepare Sherpa card</u> according to your need and run it once
    - The "order" file and the necessary tree-level code is generated
  - <u>Run GoSam</u> feeding the "order" file and a configuration file with further needed inputs (paths / filtering options / ...)
  - After the virtual code is set up, <u>generate and compile</u> it with configure / make / make install
  - The produced library libgolem\_olp.so must be added to the SHERPA\_LDADD option in the Sherpa card
     High level of



High level of automation and optimization in the generated code

### In practice: GoSam+ Sherpa



### GoSam+Sherpa vs MCFM: W+1 jet



### GoSam+Sherpa vs MCFM: W<sup>+</sup> + W<sup>-</sup>



Qp. Qg≥±t

WAX-PLANCK-GESELLSCHAFT

### GoSam+Sherpa vs MCFM: W<sup>-</sup> + bb massive



### GoSam+Sherpa vs Melia et al.: W<sup>+</sup>W<sup>+</sup> + 2 jets



### •• NLO analyses with Rivet

- Easy to perform phenomenological NLO analysis using e.g. GoSam+Sherpa in association with Rivet
  - LH-uncertainty study of W+1 jet [LH2011-proceedings]



## GoSam+Sherpa Process Packages

### http://gosam.hepforge.org/proc/

#### **Process List:**

- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + jet$ , wm1jet.tar.gz (437K)
- $p p / p \bar{p} \rightarrow W^+ (\rightarrow e^+ + \nu_e) + jet$ , wp1jet.tar.gz (431K)
- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + b \bar{b}$ , wmbb.tar.gz (772K)
- $p p / p \bar{p} \to W^+(\to e^+ + \nu_e) + b \bar{b}$ , wpbb.tar.gz (771K)
- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + 2 jets$ , wm2jets.tar.gz (3.49M)
- $p p / p \bar{p} \rightarrow W^+ (\rightarrow e^+ + \nu_e) + 2 j ets$ , wp2jets.tar.gz (3.46M)
- $p p / p \bar{p} \to W^+(\to \mu^+ + \nu_\mu) + W^-(\to e^- + \bar{\nu}_e)$ , wpwm.tar.gz (716K)
- $p p / p \bar{p} \to W^+(\to \mu^+ + \nu_\mu) + W^+(\to e^+ + \nu_e) + 2 jets_{, wpwp2jets.tar.gz} (3.76M)$

#### DEPENDENCIES

To run the process packages you need the following:

- Sherpa-1.4.0
- GoSam patch for Sherpa-1.4.0: linux, mac

• Interface with Sherpa 1.4.0 (March 2012) via BLHA-interface (--enable-lhole) with a little additional patch.

- Installation details on the webpage
- Only 3 steps for NLO:
  - download
  - un-tar package
  - run 'makecode' script
- Script for plots is also attached
- Example of interface with Rivet
- Soon possibility to shower
- gosam-contrib-1.0, we recommend to set the installation path using the option --prefix.





## GoSam+Sherpa Process Packages

### http://gosam.hepforge.org/proc/

#### **Process List:**

- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + jet$ , wm1jet.tar.gz (437K)
- $p p / p \bar{p} \rightarrow W^+ (\rightarrow e^+ + \nu_e) + jet$ , wp1jet.tar.gz (431K)
- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + b \bar{b}$ , wmbb.tar.gz (772K)
- $p p / p \bar{p} \to W^+(\to e^+ + \nu_e) + b \bar{b}$ , wpbb.tar.gz (771K)
- $p p / p \bar{p} \rightarrow W^{-}(\rightarrow e^{-} + \bar{\nu}_{e}) + 2 jets_{, \text{ wm2jets.tar.gz (3.49M)}}$
- $p p / p \bar{p} \rightarrow W^+ (\rightarrow e^+ + \nu_e) + 2 jets$ , wp2jets.tar.gz (3.46M)
- $p p / p \bar{p} \to W^+(\to \mu^+ + \nu_\mu) + W^-(\to e^- + \bar{\nu}_e)$ , wpwm.tar.gz (716K)
- $p p / p \bar{p} \to W^+(\to \mu^+ + \nu_\mu) + W^+(\to e^+ + \nu_e) + 2 jets_{, wpwp2jets.tar.gz} (3.76M)$

#### DEPENDENCIES

To run the process packages you need the following:

#### Sherna-1.4.0

• Interface with Sherpa 1.4.0 (March 2012) via BLHA-interface (--enable-lhole) with a little additional patch.

- Installation details on the webpage
- Only 3 steps for NLO:
  - download
  - un-tar package
  - run 'makecode' script
- Script for plots is also attached
- Example of interface with Rivet
- Soon possibility to shower

wmbb : pas

File Edit View Scrollback Bookmarks Settings Help

luisonig@D22:wmbb\$ ls

gosam\_process\_wmbb-1.0.tar.gz makecode makeplots OLE\_order.lh OLE\_order.olc README Run\_LO.dat Run\_NLO.dat Sherpa\_References.tex luisonig@D22:wmbb\$





## GoSam+Sherpa Process Packages

### http://gosam.hepforge.org/proc/



 Interface with Sherpa 1.4.0 (March 2012) via BLHA-interface (--enable-lhole) with a little additional patch.

- Installation details on the webpage
- Only 3 steps for NLO: •
  - download
  - un-tar package
  - run 'makecode' script
- Script for plots is also attached
- Example of interface with Rivet
- Soon possibility to shower

osam process wmbb-1.0.tar.gz makecode makeplots OLE order.lh OLE order.olc README Run LO.dat Run NLO.dat Sherpa References.tex





## •• GoSam+Powheg Box

- Powheg Box GoSam interface developed recently
  - [In collaboration with C.Oleari and P.Nason] Test examples against existing processes in the Powheg Box:



AX-PLANCK-GESELLSCHAF



## •• BSM physics with GoSam

• New models can be added via FeynRules (UFO)[Christensen, Duhr]

LanHEP [Semenov]

Allows to compute one-loop corrections also for BSM phenomenology



## Conclusions and Outlook

- **GoSam** is a code for the computation of one-loop multi-leg amplitudes
  - Based on Feynman diagrams
  - Uses D-dimensional reduction tecniques
  - Flexible and broadly applicable tool
  - Public
  - **Easy to interface** with MC event generator to perform full NLO calculations:
    - so far interfaced with:

SHERPA

POWHEG BOX

- Possibilities for precision studies using NLO parton-level matched with partonshower and with hadronization effects just around the corner
  - Possible to steer everything by just editing a single input card
- We look forward to interfacing with other tools and performing NLO analyses for the LHC





G.Luisoni, 4<sup>th</sup> September 2012

#### http://gosam.hepforge.org/







7 Ap. Dg > 1t

### Reduction methods: Samurai [default]

[Mastrolia, Ossola, Reiter, Tramontano 10]

Integrals with  $\mu^2$  in the numerator

- OPP reduction algorithm [Ossola, Papadopoulos, Pittau 07]
- D-dimensional extension [Ellis, Giele, Kunszt, Melnikov 08]
- Coefficient of polynomials via DFT [Mastrolia et al. 08]
- Computation of the full rational term in one go [Internal GoSam algebraic handling]

For any one-loop amplitude:

$$\mathcal{A}_{n} = \int d^{d}\bar{q} \frac{\mathcal{N}(\bar{q},\epsilon)}{\bar{D}_{0}\bar{D}_{1}\cdots\bar{D}_{n-1}} \quad ; \quad \mathcal{N}(\bar{q},\epsilon) = N_{0}(\bar{q}) + \epsilon N_{1}(\bar{q}) + \epsilon^{2}N_{2}(\bar{q})$$
$$\bar{D}_{i} = (\bar{q} + p_{i})^{2} - m_{i}^{2} = (q + p_{i})^{2} - m_{i}^{2} - \mu^{2} \quad ; \quad \not{q} = \not{q} + \not{\mu} \quad ; \quad \bar{q}^{2} = q^{2} - \mu^{2}$$

Result of integration can be expressed as linear combination of scalar integrals: boxes, triangles, bubbles, tadpoles and rational terms

 $\mathcal{A}_{n} = \sum_{i_{0} < i_{1} < i_{2} < i_{3}}^{m-1} d(i_{0}i_{1}i_{2}i_{3})D_{0}(i_{0}i_{1}i_{2}i_{3}) + \sum_{i_{0} < i_{1} < i_{2}}^{m-1} c(i_{0}i_{1}i_{2})C_{0}(i_{0}i_{1}i_{2}) + \sum_{i_{0} < i_{1}}^{m-1} b(i_{0}i_{1})B_{0}(i_{0}i_{1}) + \sum_{i_{0}}^{m-1} a(i_{0})A_{0}(i_{0}) + \mathcal{R}$ 

### **Reduction methods: Tensorial Reconstr.**

[Heinrich, Ossola, Reiter, Tramontano 10]

Tensorial reconstruction convoluted with tensor integrals: 

Rewrite numerator function as linear combination of tensors

$$\mathcal{N}(q) = \sum_{r=0}^{R} C_{\mu_1 \dots \mu_r} q_{\mu_1} \dots q_{\mu_r}$$
$$C_{\mu_1 \dots \mu_r} q_{\mu_1} \dots q_{\mu_r} = \sum_{(i_1, i_2, i_3, i_4) \vdash r} \hat{C}_{i_1 \, i_2 \, i_3 \, i_4}^{(r)} \cdot (q_1)^{i_1} (q_2)^{i_2} (q_3)^{i_3} (q_4)^{i_4}$$

Determine the coefficients by sampling in  $q_{\mu}$  in a bottom-up approach

if 
$$q_{\mu} = (x, y, z, w)$$
 then  $\mathcal{N}(q) = \mathcal{N}(x, y, z, w)$   
**d-O**  $q = (0, 0, 0, 0)$  :  $\mathcal{N}(0, 0, 0, 0) \equiv \mathcal{N}^{(0)} = C_0$ 

Level-1 4 systems, each sampling a monomial depending on one component of  $q_{\mu}$  only  $\mathcal{N}^{(1)}(q) \equiv \mathcal{N}(q) - \mathcal{N}^{(0)}$ Allows to avoid  $q = (x, 0, 0, 0) \implies \mathcal{N}^{(1)}(x, 0, 0, 0) \equiv x C_1 + x^2 C_{11} + \ldots + x^R C_{11} \ldots 1$  $q = (0, y, 0, 0) \implies \mathcal{N}^{(1)}(0, y, 0, 0) \equiv y C_2 + y^2 C_{22} + \dots + y^R C_{22} \dots 2$ 

numerical instabilities due to vanishing Gram determinants



Leve



### •• Derive & Numpolvec

- The latest version of GoSam also implements two new features to improve speed and precision:
  - **derive**: computes the numerator by expanding in a Taylor series

$$\mathcal{N}(\hat{q}) = \mathcal{N}(0) + \hat{q}^{\mu} \frac{\partial}{\partial \hat{q}_{\mu}} \mathcal{N}(\hat{q})|_{q=0} + \frac{1}{2!} \hat{q}^{\mu} \hat{q}^{\nu} \frac{\partial}{\partial \hat{q}_{\mu}} \frac{\partial}{\partial \hat{q}_{\nu}} \mathcal{N}(\hat{q})|_{q=0} + \dots$$

one-to-one correspondence between derivatives at  $\hat{q} = 0$  and the coefficients of the tensor integrals

- numpolvec: uses numerical polarization vectors for external massless gauge bosons
  - This allows to reduce the code by generating only few helicities





#### [F.Tramontano 11]

 $k_{\gamma}$ 

k,

### **OPP integrand decomposition: 4-dim**

□ At integrand level the structure is enriched by polynomial terms that integrate to zero (I multiplied with all the propagators)

$$\begin{split} N(q) &= \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[ d(i_0i_1i_2i_3) + \tilde{d}(q;i_0i_1i_2i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i + \sum_{i_0 < i_1 < i_2}^{m-1} \left[ c(i_0i_1i_2) + \tilde{c}(q;i_0i_1i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[ b(i_0i_1) + \tilde{b}(q;i_0i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i + \sum_{i_0}^{m-1} \left[ a(i_0) + \tilde{a}(q;i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \end{split}$$

□ A choice of q fulfilling 4-ple cut condition:  $D_{i_0} = D_{i_1} = D_{i_2} = D_{i_3} = 0$ will single out just one polynomial

$$\Delta_{i_0 i_1 i_2 i_3} = \left[ d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right]$$

a can **only** be of the type 
$$q.p$$
  
where  $p = \varepsilon_{\alpha\beta\gamma} k_1^{\alpha} k_2^{\beta} k_3^{\gamma}$   
[proof in OPP 2007]

- Once fitted such polynomial we can subtract it from both sides and repeat the game with another multiple cut condition -> recursive solution
- For each phase space point the only requirement for the reduction is the knowledge of the numerical value of the numerator function N for a small set of values of the loop momentum variable, solutions of the multiple cut conditions





## •• OPP

#### [F.Tramontano 11]

### Extension to D-dim

□ fix a parametric form for the loop momentum in terms of a linear combination of four known 4-vectors  $e_i$  suitably chosen

$$\vec{q} = \vec{q} + \mu$$
  $\vec{q}^2 = q^2 - \mu^2$   $q = x_1e_1 + x_2e_2 + x_3e_3 + x_4e_4$ 

the vanishing term (spurious term in the OPP terminology) are then polynomials of  ${\bf x}_{\!_{i}}$  and  $\mu^{2}$ 

lacksquare The problem is to fit the coefficients in the polynomials  $\Delta$ 

$$\begin{split} N(\bar{q}) &= \sum_{i < < m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i, j, k, \ell, m}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k, \ell}^{n-1} \bar{D}_h + \\ &+ \sum_{i < < k}^{n-1} \Delta_{ijk}(\bar{q}) \prod_{h \neq i, j, k}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j}^{n-1} \bar{D}_h + \sum_{i}^{n-1} \Delta_{i}(\bar{q}) \prod_{h \neq i}^{n-1} \bar{D}_h \end{split}$$

✓ Example: 3-ple cut residue

$$\begin{split} \Delta_{ijk}(\bar{q}) &= c_{3,0}^{(ijk)} + c_{3,7}^{(ijk)} \mu^2 - \left( (c_{3,1}^{(ijk)} + c_{3,8}^{(ijk)} \mu^2) x_4 + (c_{3,4}^{(ijk)} + c_{3,9}^{(ijk)} \mu^2) x_3 \right) (e_1 \cdot e_2) + \\ &+ \left( c_{3,2}^{(ijk)} x_4^2 + c_{3,5}^{(ijk)} x_3^2 \right) (e_1 \cdot e_2)^2 - \left( c_{3,3}^{(ijk)} x_4^3 + c_{3,6}^{(ijk)} x_3^3 \right) (e_1 \cdot e_2)^3 \; . \end{split}$$

with the 3 cut conditions:  $D_i = D_i = D_k = 0$  one fixes  $x_1$ ,  $x_2$  and the product  $x_3x_4$ 





#### [F.Tramontano 11]

**Amplitudes & Master Integrals** 

$$\begin{aligned} \mathcal{A}_{n} &= \sum_{i < j < k < \ell}^{n-1} \left\{ c_{4,0}^{(ijk\ell)} I_{ijk\ell}^{(d)} + \frac{(d-2)(d-4)}{4} c_{4,4}^{(ijk\ell)} I_{ijk\ell}^{(d+4)} \right\} & \int d^{d}\bar{q} \frac{\bar{q} \cdot e_{2}}{\bar{D}_{i}\bar{D}_{j}} = J_{ij}^{(d)} \\ &+ \sum_{i < j < k}^{n-1} \left\{ c_{3,0}^{(ijk)} I_{ijk}^{(d)} - \frac{(d-4)}{2} c_{3,7}^{(ijk)} I_{ijk}^{(d+2)} \right\} & \int d^{d}\bar{q} \frac{(\bar{q} \cdot e_{2})^{2}}{\bar{D}_{i}\bar{D}_{j}} = K_{ij}^{(d)} \\ &+ \sum_{i < j < k}^{n-1} \left\{ c_{2,0}^{(ij)} I_{ij}^{(d)} + c_{2,1}^{(ij)} J_{ij}^{(d)} + c_{2,2}^{(ij)} K_{ij}^{(d)} - \frac{(d-4)}{2} c_{2,9}^{(ij)} I_{ij}^{(d+2)} \right\} & d = 4 - 2\varepsilon \\ &+ \sum_{i < j}^{n-1} c_{1,0}^{(i)} I_{i}^{(d)} \end{aligned}$$

The sources of rational terms are the integrals with  $\mu^2$  powers in the numerator

They are generated by the reduction algorithm(R1), but could also be present ab initio in the numerator function as a consequence of the d-dimensional algebraic manipulations (R2)





 $\mathsf{OPP}$ 



## •• Rational term

#### [F.Tramontano 11]

### More on the rational terms:

- Treatment strictly related the way the numerator function is furnished
  - > Diagramatic approach allows for the classification in two categories: R = R1 + R2
- R1 develops automatically performing the D-dimensional reduction of the tensors spanning the 4dimensional part of the loop momentum
- **R2** are present in the UV diagrams: bubbles, rank 2 and 3 triangles and rank4 boxes.
- At least two possibilities for R2 automatic computation:
  - for any fixed gauge theory calculate once and for all the contribution from all the diagrams that can generate R2 terms and define a set of tree level Feynman rules that give the R2 contribution for any process: MadLoop approach
  - Alternatively: construct the numerator function by implementing (few and universal) algebraic rules to get the R2 term on a diagram by diagram basis: GoSam approach





### •• Rational term

GoSam offers different options for the computation of the R2 terms

Thanks to the fact that we generate analytic expressions for the *d*-dimensional numerator function  $\bar{N}(\bar{q})$ 

- ▷ implicit: R<sub>2</sub> terms are kept in the numerator and reduced at runtime using the *d*-dimensional decomposition of the numerator
- explicit: R<sub>2</sub> terms are calculated analytically (without entering in the numerical decomposition)
- ▷ only: only the R<sub>2</sub> term is kept in the final result (this option does not require any additional libraries)
- $\triangleright$  off: all  $R_2$  terms are set to zero

R2 is a gauge dependent quantity





### •• Precision tests

Use the decomposition of the numerator function  $N(\bar{q})$  after determining all coefficients

$$\begin{split} \mathcal{N}(\bar{q}) &= \sum_{i < < m}^{n-1} \Delta_{ijk\ell m}(\bar{q}) \prod_{h \neq i, j, k, \ell, m}^{n-1} \bar{D}_h + \sum_{i < < \ell}^{n-1} \Delta_{ijk\ell}(\bar{q}) \prod_{h \neq i, j, k, \ell}^{n-1} \bar{D}_h + \\ &+ \sum_{i < < k}^{n-1} \Delta_{ijk}(\bar{q}) \prod_{h \neq i, j, k}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_{ij}(\bar{q}) \prod_{h \neq i, j}^{n-1} \bar{D}_h + \sum_{i < j}^{n-1} \Delta_i(\bar{q}) \prod_{h \neq i}^{n-1} \bar{D}_h \end{split}$$

- **1** Global (N = N)-test
- **2** Local (N = N)-test
- 3 Power-test

Are those methods reliable in detecting unstable phase space points?





[G.Ossola EPS2001]

## •• W<sup>+</sup>W<sup>-</sup> + 2 jets @ NLO with GoSam

[Greiner, Heinrich, Mastrolia, Ossola, Reiter, Tramontano 12]

- Part A: no 3<sup>rd</sup> gen. quarks in fermion loops and VB attached to closed fermion loops,
- Part B: VB attached to closed fermion loops,
- Part C: 3<sup>rd</sup> gen. quarks in the loops.
  - previously unknown
- No b quarks in both initial and final state



[Melia, Melnikov, Rontsch, Zanderighi 11]



### •• W+W-+2 jets @ NLO with GoSam





## GoSam as standalone code

#### • When the full code is ready:

|                            |                               |       |            |           |          | ttH_       | virtual : bash |           |           |                 | -0       |  |
|----------------------------|-------------------------------|-------|------------|-----------|----------|------------|----------------|-----------|-----------|-----------------|----------|--|
| File                       | Edit                          | View  | Scrollback | Bookmarks | Settings | Help       |                |           |           |                 |          |  |
| luiso                      | luisonig@D22:ttH virtual\$ ls |       |            |           |          |            |                | ^         |           |                 |          |  |
| codeg                      | en                            | diagr | ams-0.hh   | diagrams  | -1.log   | helicity1  | helicity14     | helicity3 | helicity6 | Makefile.conf   | model.hh |  |
| conno                      | n                             | diagr | ams-0.log  | doc       |          | helicity12 | helicity15     | helicity4 | helicity7 | Makefile.source |          |  |
| confi                      | g.sh                          | diagr | ams-1.hh   | helicity  | 0        | helicity13 | helicity2      | helicity5 | Makefile  | matrix          |          |  |
| luisonig@D22:ttH_virtual\$ |                               |       |            |           |          |            |                |           |           |                 |          |  |

- Contributions divided in directories by helicity
- Many configuration switches (renorm/scalar loop/reduction strategy) in

#### common/config.f90

- QCD renormalization fully done
  - different parts can be steered from common/config.f90
  - different renormalization schemes implemented (DRED/tHV): can partially convert from one to another at runtime (DRED -> CDR) [DRED= dim. reduction, CDR= conv. Dim regulariz., tHV= tHooft-Veltman]
  - Yukawa coupling renormalization is missing!
- Model parameters in common/model.f90





## •• Approching the Gram



Ap.Ag≥tt

JAX-PLANCK-GESELLSCHAFT

