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INTRODUCTION

Importance of top quark physics:

® [arge Yukawa coupling. Sensitivity to electroweak symmetry breaking

e Large cross section for ¢f production at the LHC: o,#(14 TeV, p;?? > 700 GeV) ~ 700 fb

® Background to various new physics searches
e Preferred channel for the decay of potential new heavy resonances

® Forward-backward asymmetry at Tevatron

Need for a full NNLO calculation for ¢¢ production at the LHC:

® An experimental error of ~5% is expected for oz

e NLOU + N(N)LL[! calculations give a theoretical uncertainty of ~10%
» [1l Nason, Dawson, Ellis “88-"90; Kuijf, van Neerven, Smith '89-91
» 2] Kidonakis, Sterman "97; Bonciani et al. 98; Cacciari et al. ’08; Moch, Uwer ’08; Kidonakis ’08
» Recently completed NNLL resumation: Ahrens et al. '11

G. Abelof (ETH Ziirich) HP2.4 - Munich, September 2012



INTRODUCTION

Total cross section for ¢t production
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INTRODUCTION

State of the art towards a full NNLO calculation

®2-]loop corrections
» Matrix elements computed in the limit s >> mZ : Czakon, Mitov, Moch "07 -'08

» Matrix elements for gg channel evaluated numerically: Czakon 08
» All IR poles evaluated analytically: Ferroglia et al. ’09

» Fermionic and leading colour parts of the ¢g channnel, and leading colour part of the gg

channel computed analytically: Bonciani et al. "08 -'09 -'11

® ] x 1-loop corrections
» Matrix element fully known: Korner et al. ’06; Anastasiou, Aybat '08; Kniehl et al. 08

® Real-virtual corrections

» IR structure of the massive one-loop amplitudes studied: Bierenbaum, Czakon, Mitov '11

® Double real corrections

» Purely numerical implementation: sector decomposition + subtraction: Czakon 10 - "11

» Antenna subtraction with massive fermions: Gehrmann-De Ridder, Ritzmann ’09:

GA, Gehrmann-De Ridder ’11 -'12;
Bernreuther, Bogner, Dekkers 11

—This talk

® Full NNLO corrections to the purely fermionic channels: Baernreuther, Czakon, Mitov "12
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INTRODUCTION

In order to apply the antenna subtraction method to the double real corrections to tt

production at hadron colliders we

e Fully extended the method at NLO (single unresolved NNLO) to treat massive quarks in

hadronic collisions
GA and Gehrmann-De Ridder, JHEP, 1104, 063 (2011)

» Constructed NLO subtraction terms for 0,7 and 044 je: (single unresolved part of o4
at NNLO)

» Integrated the relevant massive 3-parton antenna functions

e Computed NNLO subtraction terms for the double real radiation processes
GA and Gehrmann-De Ridder, JHEP, 1204, 076 (2012)

GA and Gehrmann-De Ridder arXiv:1112.4736 [hep-ph]

» Integrated the relevant massive 4-parton antenna functions
GA, Dekkers, Gehrmann-De Ridder (in preparation)
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ANTENNA SUBTRACTION AT NNLO

NNLO subtraction for m-jet production in hadronic collisions

donnNLO :/ (dUNNLO dUNNLO)
d® 42

MF,1
+/ (dUNNLo dO_NNLO)"‘/ donNTO
d®,,11 d®,, 41

MF,2
+/ oo +/ donnTo "‘/ dUNNLO +/ dUNNLO
dq) d(I) d(I)m_|_2 dCI)m+1

~MF1 1 .MF?2
® do 7o, Aoy T ot mass factorisation counterterms

® A6 n1o, oK1 o: subtraction terms

» Approximate the double-real (real-virtual) radiation matrix element in all singular
regions.

» Can be integrated over a factorised form of the phase space making poles in € explicit

® Each line is free of infrared poles and integration over the phase space can be carried out
numerically in 4 dimensions
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ANTENNA SUBTRACTION AT NNLO

Double real radiation corrections to tt + (m)jets production

dONNLO(plapZ) = NnniLo Zd@m+2(p¢g,p@,p5, .+ +y Pm+4; D1, P2)

S 2 Mt 4(PQ:PQ:Pss s Py s 1, 2)|” T (0@, PG, s, -

Antenna subtraction terms
® Reproduce the behaviour of M}, ,,|? in all their infrared limits

»Based on the universal factorisation properties of |[M}, . 4| in these singular limits
Campbell, Glover "98; Catani, Grazzini "99 -’00

e Constructed as products of antenna functions and reduced matrix elements with
remapped momenta
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ANTENNA SUBTRACTION AT NNLO

Single unresolved limits of | M, 4|?

D0

PR k)T — S35, BM,, sk S

o o [ .
J\/lm+4( ..,z,],k,...)2 N PR )\/\/lm+3( z,l,...)\2

Sjk

Subtracted with (in the final-final case)
'L]k‘Mm—FS( ]7K7"')‘2

3-parton antenna functions X7 ik

® Two hard particles i,k (hard radiatiors) and an unresolved particle j
e Give the right unresolved factor (splitting function, soft eikonal factor) in each limit
® Derived from physical matrix elements (more on this later)

Phase space mapping for reduced matrix elements M} . (..., I, K,...)
® (3 —2) mapping required to define (pr, px) from (pi, p;, Pk)

® Remapped kinematics reduces to Born kinematics in each limit
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ANTENNA SUBTRACTION AT NNLO

Double unresolved limits of | M, 14|

® Double soft limits
® Soft qq limits
e Triple collinear limits

® Soft and collinear limits

® Double collinear limits

Subtracted with (for final-final colour-connected configurations)

s e Bes I L

4-parton antenna functions X ,?j Kl

® Two hard particles i,1 (hard radiatiors) and two unresolved particles j,k
® Give the right unresolved factor in each limit
¢ Derived from physical matrix elements (more on this later)

Phase space mapping for reduced matrix elements Mj, . (..., I, L,...)
® (4 — 2) mapping required to define (pr,pr) from (pi, pj, Pk, Pi1)

® Remapped kinematics reduces to Born kinematics in each limit
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ANTENNA FUNCTIONS

® Normalised physical colour-ordered matrix elements squared with two hard particles
(radiators) and unresolved radiation emitted between them

¢ Divided into different types

» According to the number of particles that they contain

- Three-parton antennae —> One unresolved particle
- Four-parton antennae — Two unresolved particles

» According to the type of hard radiators

- Quark-antiquark antennae
- Quark-gluon antennae
- Gluon-gluon antennae

» According to whether the hard radiators are in the initial or in the final state

- Final-final antennae

- Initial-final antennae All of them are needed in hadron collider observables
- Initial-initial antennae
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SUBTRACTION TERMS FOR {f PRODUCTION

In the processes
qq — ttq'd’ 9@ — ttqqd qq — e’ qq — tlqg gg — tiqq
® Soft qq limits
® [nitial-final triple collinear limits
® Double collinear initial-final limits
@ Single final-final and initial-final collinear limits
® No collinear limits involving the heavy fermions. Mass acts as a regulator.

To subtract these limits we employ

® Four-parton antennae

» Massive final-final: B} (Q, 7, q, Q)
Bernreuther, Bogner, Dekkers "11

GA, Gehrmann-De Ridder ’11-'12

» Massless initial-initial: B-type, C-type, G-type —See A. Gehrmann-De Ridder’s talk

Boughezal, Gehrmann-De Ridder, Ritzmann '10; Gehrmann, Gehrmann-De Ridder, Ritzmann 12
® Three-parton antennae

»Massive and massless in all configurations (f-f, i-f, i-i)
Gehrmann, Gehrmann-De Ridder, Glover ’05; Daleo, Gehrmann, Maitre '07;

Gehrmann-De Ridder, Ritzmann ’09; GA, Gehrmann-De Ridder "11
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SUBTRACTION TERMS FOR {f PRODUCTION

Example: ¢¢ — QQq'q

The colour decomposition reads

Mg(lQ, 2@, éq, Zlq, 5q’7 65/) == g4 <5i1i65i5i45’i3i2M8(1Q7 6(7’; : 5q’7 Zlq; , 3@, 2@) —|—>

Squaring yields

‘Mg(lQa 2@7 367721617 ¢’ 667’)‘2 ~ 98(Nc2_1) (NC’Mg(le Gg/; ; 5q’721q3 ; 3677 2@)‘2—1_)

Unresolved limits of [M2(1g, 6454, 44: 334, 20)|?
e Soft qq limit ps, ps — 0 (hard radiators: 1, 4
e Triple collinear limit 4||5||6

e Single collinear limit 5|6
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SUBTRACTION TERMS FOR {f PRODUCTION

Example: ¢¢ — QQq'q

The subtraction terms for this amplitude are
dono o ES(1g.5y.6¢)|ME(15)q. (56)y, 4g: 35, 20) P 13” (b1, p2. poo)
+(B3(1q: 67,50, 4) — ES(10,5¢,62) A3(15)q, (565, 4,) )

x| M3((156)q, 25, 33, 4412 IS (D136, p2)

3
® B (1q, 5y, 64) I MY(.. )P T3 (..)
» Subtracts the single collinear limit 5/|6
» Introduces a spurious collinear singularity 4||(56)

; 2
B (10,6050, 4)| M )P )
» Subtracts the soft ¢gq limit and the triple collinear limit
» Introduces a spurious collinear singularity 5/|6

0 E9(1g, 54, 67)AY(15)q, (56),, 4,)|IMO(. . )22 )

» Subtracts both spurious collinear limits
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SUBTRACTION OF SOFT (G LIMITS

In leading colour pieces, the subtraction of ¢ limits follows the general antenna
subtraction scheme

® Sub-amplitudes squared factorise as

Pc,Pqg—0

\/\/l%(..., die - d, 0, )\2 —  Suedb (Mg, mb)\./\/l%_2(..., a,b, )\2

® Soft factor  Bernreuther, Bogner, Dekkers "11

2(Sabscal — SacSbd — Sbcsad) 2 SacSad 2 SbeSbd

Sacdb Mg, My % 75
( ) 521(Sac + Sad)(Sbe + Sbd) 52, [ (Sact saq)f i lisp SE o HAS

2
i

Scd(sac 3K Sad)2 Scd(sbc ol de)2

2
Zmb

e Hard radiators (a,b) can be immediately identified from the colour connection

e This singularity is subtracted with one four-parton antenna

Xé(L)(a’v Cqs dQ7 b)‘Mgz—2(7 Aa Ba )‘2

since

0 Pc;pqg—0
X4 (CL, 0677 dQ7 b) P Sacdb(maa mb)
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SUBTRACTION OF SOFT (G LIMITS

In certain subleading colour pieces there are sub-amplitudes like

IMa (e @55 dyg, cg) |

e Colour factor at the amplitude level contains §;_;,
e Soft ¢q pair splits from a photon-like propagator
® Hard radiators cannot be identified from the colour connection

® Soft ¢g limit cannot be subtracted with a single antenna function

To subtract the soft gq limits in these types of subleading colour contributions we
examine the universal factorisation properties of colour ordered matrix elements at the
amplitude level
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SUBTRACTION OF SOFT (G LIMITS

In the leading colour case

Pc,pqg—0

Mo @, cg55dy, b, ...) —  [8av,ve] (J* (e, pa) — T (Do, Da)) My _o(noy @, 0, 0

py

Sik(8ij+Sik)

e Soft currents J" (p;,pr) =

® Squaring [tgY, ve| (JE (De, pa) — I} (Pes pa)) We obtain Sgean (g, mp)

In the subleading colour case, all hard fermions can radiate the soft ¢g pair

Pc,pqg—0
g e ) [Ga7.0 ( N T )= Jf(pc,pd)>/\/l%_z(~-,a)

ic{q} e

Squaring this gives

pc,Pqg—0 1
|M%(...,&;;dq,(ﬁq)‘2 e ( Z Sicdj(miamj OF 5 Z SZCdj mzam])

i€q} (4,5)€{q}
J€{q} 7]

= sicdj<mi,mj>>M22<...,a>2
(4,5)€{q}
17]
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SUBTRACTION OF SOFT (G LIMITS

Therefore, to subtract soft ¢g limits in these subleading colour pieces we need a combination
of several antennae

e ) X6, d DML A
i€{q}

JE{q}

1 ; :
5 Z Xff(z, C, d,])’M%—2(---a A)(i,j)‘z

(4,5)€{q}
]

1 : :
- Z Xg(z, c, d,])’Mg_Q(---v A>(i,j)’2

(i.4)€{a)
7]

Crucial: this subtraction term also reproduces the triple collinear limits involving the soft ¢¢
pair without introducing any spurious singularity
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NUMERICAL CHECKS

To test our subtraction terms
® Generate phase space points in the vicinity of each limit

® Define a variable x for each limit that controls the proximity of the phase space points to
the singularity

e Compute the ratio R = d6 %, ,/d6% nr o for several values of x

A

Soft ¢q limitin ¢ — QQq'q’ T = (5 — s12)/8

5000

lg

4500

4000 [

3500 [

3000 [

2500

Number of events

2000

1500 -

1000 [

" ;ﬂ_ﬁ
0 e o s i i . e e s s e s S T e

0.99996 0.99997 0.99998 0.99999 1.00001 1.00002 1.00003 1.0000
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NUMERICAL CHECKS

Triple collinear limit 3||5/|6 in ¢ — QQq'q T = —8356/5

4000 T

3500 -

3000

2500

2000

Number of events

1500

1000 |-

500 | wff{: L —— |
M’ii =
0 I 1 I T

0.99994 0.99996 0.99998 1.00002 1.00004 1.00004

Histrograms become more sharply peaked around R=1 as we get closer to the
singularities by making x smaller

Similar results are obtained in all limits for all the other partonic processes

- S . T ; : : :
= doxnLo is a correct approximation of d6&% ; , in all singular regions!
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INTEGRATED ANTENNAE

Subtraction terms need to be integrated

e Factorise the phase space into a product of an antenna phase space and a reduced phase
space (different factorisation for f-f, i-f, i-i configurations)

e Integrate antenna functions over the corresponding antenna phase space analytically

¢ [ eave the reduced matrix elements unintegrated

Schematically, we do the following (for subtraction terms with 4-parton antennae)

.—Antenna phase space. Different for (f-f,i-f,i-1)

4

= / dpie X0 IM,. |2 T / dby, X9 - / d®,, |[Mmyal® Ji

dq)m_|_2 Sy d(I)m : dq)X

X9 / 48, [Miyal T

\ & 4

Integrated antenna

(i , Integrated subtraction term
(explicit poles in €)

The integrated subtraction term can be then combined with the double virtual and mass
factorisation terms cancelling IR poles. Integration over d®,, can be safely done in d=4.
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INTEGRATED MASSIVE FINAL-FINAL ANTENNAE

® Phase space factorises as

B DD DE, Dy Pmia; P1,02) = AP (ps,. .., DI, DL, Droios DG
d®x, .., (D5 D508 E Dty

® Massive antenna phase space related to the massive 1—4 phase space

d®4(p;, ps, D, P15 01,0L) = P2(q°, mg) % d®x, ., (s, D, Pk, Pi; P1, PL)

Inclusive 2-particle phase space with ¢ = pr + pr,

® Integrated antennae

1
i omis 0
Xz’jkl S [C(E)]2 /d(I)Xz’jle’ijkl

» Depend on two variabes X,g- = Xg;{z(QQ, me

0

e Used to evaluate the integrated antennae B, -
QqqQ

Bernreuther, Bogner, Dekkers "11
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INTEGRATED MASSIVE INITIAL-FINAL ANTENNAE

® Phase space factorises as

dq)m—|—2(p37"'7pj7pk7pl7"'7pm—|—4;plap2 / _dq) p37"'7ﬁj\l_€/l7"'7p?n—|—2;ajp17p2)

xd@xl,jkl(pj,pk,pl;l?h q)

O o e
= e Dikl = Djt Prk Dl el

® Massive antenna phase space related to the massive 2— 3 phase space

Q2+m§+m%—|—ml2
L

d®x, ...(pj, Pr, P P1,9) = d®s(p;, Pk, p1; 1, q)

® Integrated antennae

1
0 e 0
Xl,jkl R [C(e)]Q /dq)Xl,ijijl

e Used to evaluate the integrated antennae B) .., &) g »
GA, Dekkers, Gehrmann-De Ridder "12 (in preparat1on)
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INTEGRATED MASSIVE INITIAL-FINAL ANTENNAE

Integration of initial-final 4-parton massive antennae BY, ,_
q',Qqq >

® DIS-like 2 — 3 kinematics with a massive particle in the final state

g+ p2 — p1 + p3 + pa pi— Mo pe e

® We use the following variables to parametrise the kinematics
2
"o

2 2 0 0 2
Q q . (q +p2)2 Lkl ,]kl( )

¢ Express the phase space integrals as cuts of two-loop four-point functions with two off-
shell legs in forward scattering kinematics

® Reduce to master integrals

= / d®s(p1, p2, P3; P2, q) Effectively 1— 3 integrals.

Known from
/ d®s3(p1, P2, p3:02,q)((p1 + p3)? — mé) Gehrmann-De Ridder, Ritzmann "10

1
Q—p1)2

Computed using
1 ditferential
equations (NEW)

/dq)3(p17p27p3;p27 Q)(

[[4,9] T /dq)3(p17p27p3;p27Q)(

g — p1)2((p1 — p2)2 — m3)
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SUMMARY AND CONCLUSIONS

® We applied the antenna subtraction method at NNLO to evaluate the double real
corrections to heavy quark pair production in hadronic collisions

® We built subtraction terms for the processes
qq — ttq'd  q@ — ttqq qq' —tted qq—ttag gg — tiqq

® We tested numerically that our subtraction terms correctly approximate the double real
radiation matrix elements in all their unresolved limits: non trivial check on our
extension of the antenna subtraction method to treat massive final states

® We reduced the corresponding initial-final massive four-parton antenna to master

integrals and evaluated these integrals using differential equations. Integrated antennae
to come out soon

® Next tasks
» Construct subtraction terms for the remaining partonic processes

» Tackle the real-virtual contributions
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SPIN CORRELATIONS

Single collinear limit 5||6 in q7 — QQq'{ T = S56/5

5/ 6q/

Number of events

]

® The peaks around R=1 are not very sharp

® The peaks do not become sharper as we make x smaller
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SPIN CORRELATIONS

In building our subtraction terms we assumed

Gl
5

e qq..) P a2l Ml e aie

qq

We used this factorisation
® To subtract single collinear limits from the real radiation matrix elements

® To remove spurious single collinear limits from 4-parton antennae

However, in limits arising from a gluon splitting angular correlations are also present

In these types of limits amplitudes actually factorise as

allq 1 3
e ag )| > PR (s o e e

S5 qq__>G nv
qq

1
—qu_>G<Z>|Mm—1( e G, e )‘2 -+ ang

Sqq

TR

e k) =g 41— 2) kiéj L : tensorial splitting functiong

® ang : angular correlation terms
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SPIN CORRELATIONS

With a suitable parametrisation of the kinematics in the limit it can be shown that

ang ~ cos(2¢ + «)

%

Azimuthal angle of the collinear pair
about the collinear axis

— The angular correlation terms corresponding to a given phase space point cancel
against those corresponding to the same point with the collinear pair rotated about the

collinear axis by 7 /2

1400

1200

1000 |

800 -

600 -

Number of events
Number of events

400

1 1 1
0.96 0.98 1 1.02 . . 0.98 1 1.02
R R

Without azimuthal averaging With azimuthal averaging
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ANTENNA FUNCTIONS

e Normalised physical matrix elements with two hard particles (radiators) and unresolved

radiation emitted between them
e Divided into different types
» According to the type of hard radiators
» According to the number of particles that they contain
» According to whether the hard radiators are in the initial or in the final state
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ANTENNA FUNCTIONS

e Normalised physical matrix elements with two hard particles (radiators) and unresolved
radiation emitted between them

¢ Divided into different types
» According to the type of hard radiators

- Quark-antiquark antennae: calculated from M (v* = gq + X)|2[IM(F —qais

e g
Pt aq)?

Eg. A3(q,9,9

2

- Quark-gluon antennae: calculated from |[M°(y — g+ X)|?/|IM°(x — gg)|

MO (X — Ggg)|?

- Gluon-gluon antennae: calculated from |[M°(H — X)|?/|M°(H — gg)|

IMO(H — ggg)|?

» According to the number of particles that they contain
» According to whether the hard radiators are in the initial or in the final state
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ANTENNA FUNCTIONS

e Normalised physical matrix elements with two hard particles (radiators) and unresolved
radiation emitted between them

e Divided into different types
» According to the type of hard radiators

» According to the number of particles that they contain

0
ik
v One unresolved particle

-Three-parton antennae X

v Subtract single unresolved limits

2 0
- Four-parton antennae X,

v Two unresolved particles j k
v Subtract (colour-connected) double unresolved limits

» According to whether the hard radiators are in the initial or in the final state
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ANTENNA FUNCTIONS

e Normalised physical matrix elements with two hard particles (radiators) and unresolved
radiation emitted between them

e Divided into different types
» According to the type of hard radiators
» According to the number of particles that they contain
» According to whether the hard radiators are in the initial or in the final state

2
- Final-final antennae it o g — MACF + W\Q‘

-Initial-final antennae Ag (G —

-Initial-initial antennae  A3(q,g,q) = | | >\,\N
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