

aMC@NLO with MadGraph5

Marco Zaro, CP3 - UCLouvain in collaboration with Rikkert Frederix, Stefano Frixione, Fabio Maltoni, Paolo Torrielli, Valentin Hirschi & the MadGraph5 Team

> HP2 2012, Max Planck Institute for Physics, Munich

- Time: trade time spent to code/debug with time to do pheno
- Trust: results from automatic tools are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need for highly-skilled users

- Time: trade time spent to code/debug with time to do pheno
- Trust: results from automatic tools are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need for highly-skilled users
- Why NLO?
 - Reliable prediction of total rates
 - Reduction of theoretical uncertainties

- Time: trade time spent to code/debug with time to do pheno
- Trust: results from automatic tools are "correct by definition"
- Easy: automatic tools can be used as black-boxes: no need for highly-skilled users
- Why NLO?
 - Reliable prediction of total rates
 - Reduction of theoretical uncertainties
- Why PS-matching?
 - We do not see partons at colliders
 - Matching to PS cures some fixed-order ill-behaved observables

NLO basics

NLO basics

- Generate virtual Matrix Elements
- Generate real emission MEs and counterterms, put them together and integrate them in an efficient way

The OPP Method

Ossola, Papadopoulos, Pittau, arXiv:hep-ph/0609007 & arXiv:0711.3596

 Exploit the OPP method: reduce the virtual amplitude at the integrand level to a linear combination of scalar integrals, plus rational terms

$$\begin{split} A(\bar{q}) &= \frac{N(q)}{\bar{D}_0 \bar{D}_1 \cdots \bar{D}_{m-1}}, \qquad N(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{m-1} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] \prod_{i \neq i_0, i_1, i_2, i_3}^{m-1} D_i \\ &+ \sum_{i_0 < i_1 < i_2}^{m-1} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] \prod_{i \neq i_0, i_1, i_2}^{m-1} D_i \\ &+ \sum_{i_0 < i_1}^{m-1} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] \prod_{i \neq i_0, i_1}^{m-1} D_i \\ &+ \sum_{i_0}^{m-1} \left[a(i_0) + \tilde{a}(q; i_0) \right] \prod_{i \neq i_0}^{m-1} D_i \\ &+ \tilde{P}(q) \prod_{i}^{m-1} D_i \,. \end{split}$$

- Use CutTools: feed with the loop numerator, and obtain the coefficients of the scalar integrals and CC rational terms (RI)
- Add R2-rational terms/UV counterterms (process-independent)

The FKS subtraction

- Find parton pairs *i*, *j* that can give collinear singularities
- Split the phase space into regions with one collinear sing
 - Soft singularities are split into the collinear ones

$$|M|^{2} = \sum_{ij} S_{ij} |M|^{2} = \sum_{ij} |M|^{2}_{ij} \qquad \sum_{ij} S_{ij} = 1$$
$$S_{ij} \rightarrow 1 \text{ if } k_{i} \cdot k_{j} \rightarrow 0 \qquad S_{ij} \rightarrow 0 \text{ if } k_{m \neq i} \cdot k_{n \neq j} \rightarrow 0$$

- Integrate them independently
 - Parallelize integration
 - Choose ad-hoc phase space parameterization
- Advantages:
 - # of contributions ~ n^2 (dipole ~ n^3)
 - Exploit symmetries: 3 contributions for x y > ng

MC@NLO basics

- MC@NLO: match NLO computation with PS
 - Define MC counterterms in the cross-section computation

 $\frac{d\sigma_{MC@NLO}}{dO} = \left[\int d\Phi_n (B+V+\int d\Phi_1 MC)\right] I^n_{MC}(O) + \left[\int d\Phi_{n+1} (R-MC)\right] I^{n+1}_{MC}(O)$

• MC is the cross-section for the first emission from the shower MC

$$I_{MC}^{k} = \Delta + \Delta d\Phi_1 \frac{MC}{B} + \dots \qquad \Delta = \exp\left[-\int d\Phi_1 \frac{MC}{B}\right]$$

- NLO normalization is kept
- MC are MC-dependent, but process-independent
 - Currently available for Herwig6, Herwig++, Pithya6

$$MC = J \frac{1}{t_{MC}} \frac{\alpha_s}{2\pi} P(z^{MC}) B$$

MadGraph is an automatic tree-level matrix element generator

- MadGraph is an automatic tree-level matrix element generator
- Pro: Can generate any tree-level matrix element
 - Born MEs
 - Real MEs

- MadGraph is an automatic tree-level matrix element generator
- Pro: Can generate any tree-level matrix element
 - Born MEs
 - Real MEs
- Con: Can generate only tree-level matrix elements
 - What about the virtuals?

- MadGraph is an automatic tree-level matrix element generator
- Pro: Can generate any tree-level matrix element
 - Born MEs
 - Real MEs
- Con: Can generate only tree-level matrix elements
 - What about the virtuals?
 - Think of loop diagrams as trees with two glued particles

- MadGraph is an automatic tree-level matrix element generator
- Pro: Can generate any tree-level matrix element
 - Born MEs
 - Real MEs
- Con: Can generate only tree-level matrix elements
 - What about the virtuals?
 - Think of loop diagrams as trees with two glued particles

UV/R2 terms are just new vertices

MadLoop & MadFKS

MadLoop & MadFKS

- MadLoop (see Valentin's talk):
 - Computes the loop numerator for any given amplitude and feeds it to CutTools
 - Adds R2/UV counterterms (coded as new vertices)

MadLoop & MadFKS

- MadLoop (see Valentin's talk):
 - Computes the loop numerator for any given amplitude and feeds it to CutTools
 - Adds R2/UV counterterms (coded as new vertices)
- MadFKS:
 - Generates the real and born MEs and counterterms (colorand spin-linked borns)
 - Links the virtuals from MadLoop or via BLHA
 - Organizes the integration of n and n+1 body cross-section
 - Generates events to be showered

- ttH/ttA, arXiv:1104.5613
- Vbb, arXiv:1106:6019
- 4 leptons, arXiv:1110.4738
 - Scales uncertainities included via reweighting
 - Added Pythia counterterms

- ttH/ttA, arXiv:1104.5613
- Vbb, arXiv:1106:6019
- 4 leptons, arXiv:1110.4738
 - Scales uncertainities included via reweighting
 - Added Pythia counterterms
- Wjj, arXiv:1110.5502

- ttH/ttA, arXiv:1104.5613
- Vbb, arXiv:1106:6019
- 4 leptons, arXiv:1110.4738
 - Scales uncertainities included via reweighting
 - Added Pythia counterterms
- Wjj, arXiv:1110.5502

What happened in 2012?

Limitations with MGv4

- Identification of FKS i/j pair hardcoded and based on particles identities rather than on interactions
 - Difficult to generalize to new models or non-QCD perturbations
- No finite width effects in the loops
- 4glu R2 too much complicated to be implemented in Fortran
 - Virtuals for processes with 4glu vertices incomplete

From MG4 to MG5

- MadGraph completely rewritten in Python
 - Modern coding language
 - Modular/Object oriented structure
 - Unit/Acceptance/Parallel tests to test the code behaviour
 - New diagram generation algorithms
 - Code generation time drastically reduced
 - Possibility to reuse common part of diagrams
 - Running time improvement
 - Any model can be loaded via the FR/UFO interface
 - Possibility do define vertices with arbitrary # of legs and color structures

From MG4 to MG5

	Process	MADGRAPH 4	MADGRAPH 5	Subprocesses	Diagrams
	1100035			Subprocesses	
	$pp ightarrow \jmath \jmath \jmath$	$29.0 \mathrm{s}$	$25.8 \mathrm{~s}$	34	307
 MadGraph c 	$pp ightarrow jjl^+l^-$	$341 \mathrm{s}$	$103 \mathrm{\ s}$	108	1216
	$pp \rightarrow jjje^+e^-$	$1150 \mathrm{s}$	$134 \mathrm{\ s}$	141	9012
Modern cc	$u\bar{u} \rightarrow e^+e^-e^+e^-e^+e^-$	772 s	242 s	1	3474
Madular/C	gg ightarrow ggggg	$2788 \mathrm{\ s}$	$1050 \mathrm{\ s}$	1	7245
	$pp \rightarrow jj(W^+ \rightarrow l^+ \nu_l)$	146 s	$25.7 \mathrm{\ s}$	82	304
Unit/Accer	$pp \to t\bar{t}$ +full decays	$5640 \mathrm{\ s}$	$15.7 \mathrm{~s}$	27	45
	$pp ightarrow { ilde q}/{ ilde g} { ilde q}/{ ilde g}$	222 s	$107 \mathrm{\ s}$	313	475
New diagram	7 particle decay chain	383 s	$13.9 \mathrm{\ s}$	1	6
	$gg \to (\tilde{g} \to u\bar{u}\tilde{\chi}_1^0)(\tilde{g} \to u\bar{u}\tilde{\chi}_1^0)$	$70 \mathrm{s}$	$13.9 \mathrm{\ s}$	1	48
	$pp \rightarrow (\tilde{g} \rightarrow jj\tilde{\chi}_1^0)(\tilde{g} \rightarrow jj\tilde{\chi}_1^0)$		$251 \mathrm{s}$	144	11008
		•	•		

- Possibility to reuse common part or ulagrams
 - Running time improvement
- Any model can be loaded via the FR/UFO interface
- Possibility do define vertices with arbitrary # of legs and color structures

From MG4 to MG5

]	Process		MADGE	RAPH 4	MA	ADGRAPH 5	Subprocesses	Diagrams
				p	$p \rightarrow jjj$		29.0) s		$25.8 \mathrm{~s}$	34	307
Made	Fran	h c		pp	$\rightarrow jjl^+l^-$	_	341	s		$103 \mathrm{\ s}$	108	1216
				pp -	$\rightarrow jjje^+e^-$	e ⁻	1150) s		$134 \mathrm{\ s}$	141	9012
• Mo	derr	ר CC	1	$u\bar{u} \rightarrow e$	$+e^{-}e^{+}e^{-}$	$e^{+}e^{-}$	772	s		242 s	1	3474
	- ا - <u>ا -</u>			gg	$\rightarrow ggggg$	g	2788	8 s		$1050 \mathrm{\ s}$	1	7245
• I*IO	aula	r/C	1	$pp \rightarrow j$	$j(W^+ \rightarrow$	$l^+\nu_l$	146	s		$25.7 \mathrm{~s}$	82	304
• Uni	$t/\Delta c$			$pp \rightarrow t$	\bar{t} +full d	ecays	5640) s		$15.7 \mathrm{s}$	27	45
				pp	$\rightarrow \tilde{q}/\tilde{q}\tilde{q}/$	í ą	222	s		$107 \mathrm{s}$	313	475
Generation of 10	,000 unv	weighted	events							13.9 s	1	6
Computer: Sony	Vaio I Z	aptop / ?	*128-cor	e cluster	Directo	any gizo	Event a	on time		13.9 s	1	48
Process	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5	MG 4	MG 5	5	251 s	144	11008
$pp \rightarrow W^+ i$	6	2	12	4	79 MB	35 MB	3:15 min	1:55 mi	in	2015	111	11000
$pp \rightarrow W^+ jj$	41	4	138	24	438 MB	64 MB	9:15 min	4:19 mi	in	granis		
$pp ightarrow W^+ jjj$	73	5	1164	120	842 MB	110 MB	21:41 min*	8:14 min	n*			
$pp ightarrow W^+ j j j j j$	296	7	15029	609	3.8 GB	352 MB	2:54 h*	46:50 mi	in*		-	
$pp \rightarrow W^+ j j j j j$	-	8	-	2976	-	1.5 GB	-	11:39 h	n*	[:] O inte	erface	
$pp ightarrow l^+ l^- j$	12	2	48	8	149 MB	44 MB	21:46 min	3:00 mi	in			-
$pp ightarrow l^+ l^- jj$	54	4	586	48	612 MB	83 MB	2:40 h	11:52 m	nin	arv#	of legs a	nd
$pp \rightarrow l^+ l^- j j j$	86	5	5408	240	1.2 GB	151 MB	49:18 min*	16:38 mi	in*			
$pp \rightarrow l^+ l^- j j j j j$	235	7	65472	1218	5.3 GB	662 MB	7:16 h*	2:45 h	*			
$pp ightarrow tar{t}$	3	2	5	3	49 MB	39 MB	2:39 min	1:55 mi	in			
$pp \rightarrow t\bar{t}j$	7	3	45	17	97 MB	56 MB	10:24 min	3:52 mi	in			
$pp ightarrow t ar{t} j j$	22	5	417	103	274 MB	98 MB	1:50 h	32:37 m	nin			
$pp ightarrow t ar{t} j j j$	34	6	3816	545	620 MB	209 MB	2:45 h*	23:15 mi	in*			

aMC@NLO with MG5: tackling the old limitations

aMC@NLO with MG5: tackling the old limitations

Limitations in v4

Improvements in v5

- Identification of FKS i/j pair hardcoded and based on particles identities rather than on interactions
 - Difficult to generalize to new models or non-QCD perturbations
- 4glu R2 too much complicated to be implemented in Fortran
 - Virtuals for processes with 4glu vertices incomplete
- No finite width effects in the loops

- Splitting of legs based on the interactions in the model, and on their perturbation (QCD, QED...)
 - Fully model independent, possibility to extend to non-QCD perturbation
- 4glu R2 available, treated as sum of different color/Lorentz structures
 - Any virtual ME can be generated
- Loop-induced processes can be generated
- Complex-mass scheme soon available

aMC@NLO with MG5: further improvements

aMC@NLO with MG5: further improvements

MadFKS

- Drastic speed improvement on code-generation (for pp > 3j ~ 15 mins)
- More compact code structure, sum/MC over different real emissions
 - Reduction number of channels for multichannel integration (real > born), possibility to use real MEs not based on Feynman diagrams

MadLoop

- Speed improvements:
 - Recycle trees used in different diagrams
 - Call CutTools after helicity sum
 - Exploit open-loops techniques
- Multiprecision support

Generation, compilation and integration times, without virtuals

(on my MacBook Pro)

p p > t t~	MG4	MG5	
code gen.	43s	5s	
compilation	326s	50s	
#channels	36	5	
integration	270s (0.1%	5) 260s (0.1	%)
p p > w+ b b~	MG4	MG5	
p p > w+ b b~ code gen.	MG4 155s	MG5 5s	
<pre>p > w+ b b~ code gen. compilation</pre>	MG4 155s 136s	MG5 5s 36s	
<pre>p > w+ b b~ code gen. compilation #channels</pre>	MG4 155s 136s 24	MG5 5s 36s 4	

MAdFKS4 vs MadFKS5: not so impressive... or?

- Running time for a given precision are ~ the same. However:
 - ALOHA subroutines are ~2 slower than HELAS ones
 - More subchannels make the error on the total rate smaller (sum in quadrature)
 - The relative error on the single channel is ~2-3 times smaller in v5
 - This do not include the virtuals from MadLoop

MAdFKS4 vs MadFKS5: Wbb

Excellent agreement between the 2 codes

Physics: multi-jet production

2 and 3 jets validated against numbers in arXiv:1112.3940 (BlackHat)
 Pt 13 NLO

Ongoing studies for dijet production matched to shower

• How to deal with unstable final state particles (e.g. top) @NLO?

- How to deal with unstable final state particles (e.g. top) @NLO?
 - Let the shower do the decay
 - Spin correlations lost

- How to deal with unstable final state particles (e.g. top) @NLO?
 - Let the shower do the decay
 - Spin correlations lost
 - Generate full process with only stable particles (p p > I+I- v v~ b b~)
 - Includes spin correlations, off-shell effects, non resonant contributions, ...
 - Needs special treatment of intermediate resonances (e.g. cpx mass)
 - Computationally very expensive
 - Only needed when background is enhanced or when aiming at very high precision

- How to deal with unstable final state particles (e.g. top) @NLO?
 - Let the shower do the decay
 - Spin correlations lost
 - Generate full process with only stable particles (p p > I+I- v v~ b b~)
 - Includes spin correlations, off-shell effects, non resonant contributions, ...
 - Needs special treatment of intermediate resonances (e.g. cpx mass)
 - Computationally very expensive
 - Only needed when background is enhanced or when aiming at very high precision

Anything in between?

Artoisenet, Frederix, Rietkerk

Artoisenet, Frederix, Rietkerk

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events

Artoisenet, Frederix, Rietkerk

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events
- Solution:
 - Read event
 - Generate decay kinematics
 - Reweight the event with ratio $\left|M_{P+D}\right|^2/\left|M_P\right|^2$
 - Or do secondary unweighting
 - Generate many decay configurations until $|M_{P+D}|^2 / |M_P|^2 > \text{Rand}() \max(|M_{P+D}|^2 / |M_P|^2)$

Artoisenet, Frederix, Rietkerk

- Wish-list:
 - For a given event sample (LO or MC@NLO), include the decay of any final state particle
 - Keep spin correlations
 - Generate decayed unweighted events
- Solution:
 - Read event
 - Generate decay kinematics
 - Reweight the event with ratio $\left|M_{P+D}\right|^2/\left|M_P\right|^2$
 - Or do secondary unweighting
 - Generate many decay configurations until $|M_{P+D}|^2 / |M_P|^2 > \text{Rand}() \max(|M_{P+D}|^2 / |M_P|^2)$
- This has already been done for t t~ and singletop Frixione, Leanen, Motylinski, Webber, arXiv:hep-ph/0702198

Marco Zaro

- How to deal with MC@NLO events?
- Spin correlations usually have tiny effects on observables
 - Include them at tree level
- For H (n+1 body) events, use decayed real-emission matrixelement (generated on the fly with MG)
- For S (*n* body) events, use decayed born matrix-element
- This guarantees NLO accuracy for observables related to production (e.g. top pt)
- This includes all spin correlation for observables related to production + decay (apart non-factorizable ones)

The decay package: validation

Frixione, Laenen, Motylinski & Webber, hep-ph/0702198

aMC@NLO+DecayPackage

How to?

How to?

Integration/event generation and analyse made between yesterday and this morning!

Conclusions

- aMC@NLO can generate events for any SM process at NLO accuracy, matched to parton showers
 - Only limited by CPU speed
- Automation: reliable results, more time do do real physics
- Rewritten into MG5 framework
 - All v4 limitations removed
- Use any model via the FR/UFO/ALOHA interface (work in progress...)
- Decay package to include spin correlations @NLO
- Code publicly available soon!
- Stay tuned on http://amcatnlo.cern.ch

Backup slides

bbj@NLO

- Virtuals from Dittmaier, Weinzerl, Uwer (arXiv:0810.0452)
 - validated against MadLoop5
- 4 flavour scheme (and PDF)
- Kt algo for jets, R=0.5, pt > 20 GeV
- K factor ~ 2

bbj@NLO

- Virtuals from Dittmaier, Weinzerl, Uwer (arXiv:0810.0452)
 - validated against MadLoop5
- 4 flavour scheme (and PDF)
- Kt algo for jets, R=0.5, pt > 20 GeV
- K factor ~ 2

Wbj@NLO

- Whole code from aMC@NLO
- 5 flavour scheme (j can be b)
 - Need to impose special cuts in order to have finite cross-section
 - Ask for >2 jets, at least one containing a b, but not bb

