Top-pair production in hadron collisions at NNLL

Jan Piclum

in collaboration with M. Beneke, P. Falgari, S. Klein, C. Schwinn, M. Ubiali, F. Yan

$$\sigma_{t\bar{t}}(s) = \sum_{i,j} \int_{4m_t^2}^s \mathrm{d}\hat{s} \,\mathcal{L}_{ij}(s,\hat{s},\mu_f) \,\hat{\sigma}_{ij}(\hat{s},\mu_f,\mu_r)$$

two ways to compute cross section:

- fixed order
- sum dominant contributions to all orders

Dominant Terms

consider threshold limit: $\beta = \sqrt{1 - 4m_t^2/\hat{s}} \rightarrow 0$

Laenen et al. 1991; Catani et al.; Berger, Contopanagos; Kidonakis et al. 1996; Bonciani et al. 1998 Soft corrections:

Coulomb corrections:

Power counting: $\alpha_s/\beta \sim \alpha_s \ln \beta \sim 1$

Resummation in Momentum Space

Soft and Coulomb resummation:

Beneke, Falgari, Schwinn 2009,2010

$$\hat{\sigma}_{ij} = \sum_{R} H_{ij}^{R} \int d\omega J^{R} (E - \omega/2) W^{R}(\omega)$$

$$\hat{\sigma} \propto \hat{\sigma}^{(0)} \sum_{k} \left(\frac{\alpha_{s}}{\beta}\right)^{k} \exp\left[\underbrace{\ln \beta g_{0}(\alpha_{s} \ln \beta)}_{\text{LL}} + \underbrace{g_{1}(\alpha_{s} \ln \beta)}_{\text{NLL}} + \underbrace{\alpha_{s} g_{2}(\alpha_{s} \ln \beta)}_{\text{NNLL}} + \dots\right] \times \{1 \text{ (LL, NLL)}; \alpha_{s}, \beta \text{ (NNLL)}; \dots\}$$

Resummation of Soft Logarithms

Becher, Neubert 2006; Becher, Neubert, Xu 2007; Ferroglia Neubert, Pecjak, Yang 2009; Beneke, Falgari, Schwinn 2009; Czakon, Mitov, Sterman 2009

• hard and soft function obey RGEs

$$\mu_{h} - H(m_{t}, \mu_{h})$$

$$\mu_{f} - \mu_{s} - W(\omega, \mu_{s})$$

Resummation of Soft Logarithms

Becher, Neubert 2006; Becher, Neubert, Xu 2007; Ferroglia Neubert, Pecjak, Yang 2009; Beneke, Falgari, Schwinn 2009; Czakon, Mitov, Sterman 2009

solve RGEs in momentum space

• evolve
$$H$$
 from $\mu_h=2m_t$ to μ_f

• evolve
$$W$$
 from $\mu_s = 2m_t\beta^2$ to μ_f

$$\mu_{h} \stackrel{\frown}{\longrightarrow} H(m_{t}, \mu_{h})$$

$$\downarrow$$

$$\mu_{f} \stackrel{\frown}{\longrightarrow} H(m_{t}, \mu_{f}) J W(\omega, \mu_{f})$$

$$\downarrow$$

$$\mu_{s} \stackrel{\frown}{\longrightarrow} W(\omega, \mu_{s})$$

Resummation of Soft Logarithms

Becher, Neubert 2006; Becher, Neubert, Xu 2007; Ferroglia Neubert, Pecjak, Yang 2009; Beneke, Falgari, Schwinn 2009; Czakon, Mitov, Sterman 2009

$$\mu_{h} - H(m_{t}, \mu_{h})$$
• hard and soft function obey RGEs
• solve RGEs in momentum space
• evolve *H* from $\mu_{h} = 2m_{t}$ to μ_{f}
• evolve *W* from $\mu_{s} = 2m_{t}\beta^{2}$ to μ_{f}
• resummation of $\ln \beta$
 $\mu_{s} - W(\omega, \mu_{s})$

NB: Resummation can also be done in Mellin space: $\ln \beta \rightarrow \ln N$

Sterman 1987; Catani, Trentadue 1989

fixed soft scale:

Becher, Neubert, Xu 2007

- \bullet minimises relative fixed-order 1-loop soft correction to $\sigma_{t\bar{t}}$
- resums logarithms in hadronic cross section
- does not predict partonic cross section

fixed soft scale:

Becher, Neubert, Xu 2007

- minimises relative fixed-order 1-loop soft correction to $\sigma_{t\bar{t}}$
- resums logarithms in hadronic cross section
- does not predict partonic cross section

running soft scale:

Beneke, Falgari, Klein, Schwinn 2011

- divide β integration into two regions
- $\beta < \beta_{cut}$: small ambiguities, $\mu_s = 2m_t \beta_{cut}^2$
- $\beta > \beta_{\rm cut}$: no large logarithms, $\mu_s = 2 m_t \beta^2$
- Tevatron: $\beta_{cut} = 0.35$; LHC: $\beta_{cut} = 0.54$

Resummation of Coulomb corrections from non-relativistic Green's function

Fadin, Khoze 1987; Peskin, Strassler 1990; ...

$$\left[-\frac{\vec{\nabla}^2}{m_t} - C_F \frac{\alpha_s}{r}\right] G_C^{(0)}(\vec{r}, \vec{r}', E) = \delta(\vec{r} - \vec{r}')$$

$$J(E) = 2 \operatorname{Im} \left[G_C^{(0)}(0,0;E) + \dots \right]$$

- includes bound states below threshold (E < 0)
- depends on Coulomb scale: $\mu_C \sim m_t \beta$
- NNLL: need higher order Coulomb and non-Coulomb corrections

Matching to Fixed Order Cross Section

- $t\bar{t}$ production at Tevatron and LHC is not close to threshold: $\beta pprox 0.4$
- NLO: threshold expansion gives reasonable estimate of integral over β
- ullet match to fixed order result to improve behaviour at large eta

$$\sigma^{\text{NLO}+\text{NNLL}} = \sigma^{\text{NNLL}} - \sigma^{\text{NNLL}} \big|_{\text{NLO}} + \sigma^{\text{NLO}}$$

Matching to Fixed Order Cross Section

- $t\bar{t}$ production at Tevatron and LHC is not close to threshold: $\beta pprox 0.4$
- NLO: threshold expansion gives reasonable estimate of integral over β
- ullet match to fixed order result to improve behaviour at large eta

$$\sigma^{\text{NLO+NNLL}} = \sigma^{\text{NNLL}} - \sigma^{\text{NNLL}} |_{\text{NLO}} + \sigma^{\text{NLO}}$$
$$\sigma^{\text{NNLO}_{app}+\text{NNLL}} = \sigma^{\text{NNLL}} - \sigma^{\text{NNLL}} |_{\text{NNLO}} + \sigma^{\text{NLO}} + \sigma^{\text{NNLO}_{app}}$$

 $\sigma^{\text{NNLO}_{app}}$ contains all singular terms in β at NNLO

Necessity of Resummation

- potentially large corrections at N³LO
- $1/\beta^4$ term at N⁴LO

 \rightsquigarrow resummation is necessary

total cross section: $\sigma_{t\bar{t}}$

distributions: $\frac{\mathsf{d}\sigma_{t\bar{t}}}{\mathsf{d}M_{t\bar{t}}}$, $\frac{\mathsf{d}\sigma_{t+X}}{\mathsf{d}p_T}$, ...

NNLO_{app}

Moch, Uwer 2008; Langenfeld, Moch, Uwer 2009;

Beneke, Czakon, Falgari, Mitov, Schwinn 2009

NNLL soft gluon resummation

Cacciari, Czakon, Mangano, Mitov, Nason 2011

NNLL soft + Coulomb resummation

Beneke, Falgari, Klein, Schwinn 2011

Ahrens, Ferroglia, Neubert, Pecjak, Yang 2010, 2011; Kidonakis 2010

Ahrens, Ferroglia, Neubert, Pecjak, Yang 2010, 2011

TOP-pair Inclusive X Section

http://users.ph.tum.de/t31software/topixs/

- user-friendly program for combined soft and gluon resummation
- ullet very flexible choice of input parameters (\sqrt{s} , m_t , ...)
- $\bullet\,$ fully automatic evaluation of PDF+ $\!\alpha_s$ error for predefined PDF sets
- current version: TOPIXS 1.1

```
other programs are available:
HATHOR [Aliev et al. 2010], TopNNLO [Ahrens et al. 2011],
Top++ [Czakon, Mitov 2011]
```

Results

$\sigma_{t\bar{t}}~[{\rm pb}]$	Tevatron	LHC @ 7 TeV	LHC @ 8 TeV
NLO	$6.68 {}^{+0.36}_{-0.75} {}^{+0.23}_{-0.22}$	$158.1^{+19.5}_{-21.2}{}^{+6.8}_{-6.2}$	$226.2^{+27.8}_{-29.7}{}^{+9.2}_{-8.3}$
$NNLO_{\mathrm{app}}$	$7.00 {}^{+0.21}_{-0.31} {}^{+0.29}_{-0.25}$	$160.9^{+11.1}_{-11.5}{}^{+7.2}_{-6.7}$	$229.8^{+16.5}_{-16.7}{}^{+9.7}_{-9.0}$
NNLL	$7.15 {}^{+0.21}_{-0.20} {}^{+0.30}_{-0.25}$	$162.4^{+6.7}_{-6.9}{}^{+7.3}_{-6.8}$	$231.8 {}^{+9.6}_{-9.9} {}^{+9.8}_{-9.1}$

 m_t =173.3 GeV, MSTW 2008 NLO/NNLO

[Beneke, Falgari, Klein, JP, Schwinn, Ubiali, Yan 2012]

- \bullet correction beyond NLO: $\sim 7\%$ at Tevatron, $\sim 3\%$ at LHC
- exact NNLO $q\bar{q}$ result reduces theory uncertainty at Tevatron to $\sim\pm3\%$ [Bärnreuther, Czakon, Mitov 2012]
- \bullet theory uncertainty at LHC $\sim\pm5\%$
- PDF+ α_s uncertainty $\sim \pm 5\%$

Comparison of NNLL Results

Beneke, Falgari, Klein, JP, Schwinn, Ubiali, Yan 2012 ($m_t = 173.3$ GeV) Top++ 1.3 ($m_t = 173.3$ GeV) Ahrens, Ferroglia, Neubert, Pecjak, Yang 2011 (1PI, $m_t = 173.1$ GeV) Ahrens, Ferroglia, Neubert, Pecjak, Yang 2011 (PIM, $m_t = 173.1$ GeV) D0 2011; CDF 2009; CMS result from ICHEP 2012

error bars: solid – theory, dashed – PDF($+\alpha_s$)

PDF set: MSTW 2008 NNLO

Comparison of PDF Sets

MSTW 2008 NNPDF 2.1 ABM 2011 CT 2010 D0 2011: CDF 2009: CMS result from ICHEP 2012

error bars: solid – theory, dashed – PDF+ α_s

 $\alpha_s(M_Z) = 0.118, m_t = 173.3$ GeV, NNLL₂ computed with TOPIXS 1.1 using NNLO PDFs

Jan Piclum (RWTH Aachen)

Comparison of PDF Sets

MSTW 2008 NNPDF 2.1 ABM 2011 CT 2010 D0 2011; CDF 2009; CMS result from ICHEP 2012

error bars: dashed – PDF+ α_s

 $\alpha_s(M_Z) = 0.118, m_t = 173.3$ GeV, NNLL₂ computed with TOPIXS 1.1 using NNLO PDFs

Gluon Distribution

Reweighting of NNPDF 2.1 gluon distribution using 350 replicas and $\sigma_{t\bar{t}}^{\exp} = 173.23 \pm 9.59$ pb, $m_t = 173.3$ GeV, $\alpha_s = 0.118 \pm 0.0015$

- total cross section is available at NNLL
- public programs are available for analyses
- theory uncertainty $\sim \pm 5\%$ ($\pm 3\%$ at Tevatron)
- PDF+ α_s uncertainty $\sim \pm 5\%$
- good agreement between PDF sets, except ABM 2011 at LHC
- LHC data should already have impact on PDF fits

Kinematic Ambiguity in Fixed Soft Scale

cross section depends on energy $E=\sqrt{\hat{s}}-2m_t$

threshold limit: $E \approx m_t \beta^2 + \dots$

 \rightsquigarrow soft corrections can be expressed in terms of $\ln(E/\mu_s)$ or $\ln(m_t\beta^2/\mu_s)$ expressions agree in threshold limit, but lead to large differences at

Tevatron and LHC energies:

	$\ln(E/\mu_s)$	$\ln(m_t\beta^2/\mu_s)$
Tevatron	$\mu_s = 52 \mathrm{GeV}$	$\mu_s=35{\rm GeV}$
LHC (8 TeV)	$\mu_s = 103 {\rm GeV}$	$\mu_s = 60 {\rm GeV}$

	Tevatron	LHC8
Beneke et al. 2012	$7.15^{+0.21}_{-0.20}{}^{+0.30}_{-0.25}$	$231.8^{+9.6}_{-9.9}{}^{+9.8}_{-9.1}$
top++ 1.3	$7.06 {}^{+0.15}_{-0.23} {}^{+0.29}_{-0.24}$	$222.7^{+21.2}_{-11.9}{}^{+9.2}_{-8.6}$
Ahrens et al. 2011, 1PI	$6.55 {}^{+0.16}_{-0.14} {}^{+0.32}_{-0.24}$	$214{}^{+10}_{-10}{}^{+10}_{-11}$
Ahrens et al. 2011, PIM	$6.46 {}^{+0.18}_{-0.19} {}^{+0.32}_{-0.24}$	$210{}^{+10}_{-8}{}^{+10}_{-11}$
D0 2011	$7.56^{+0.63}_{-0.56}$	
CDF 2009	$7.50^{+0.48}_{-0.48}$	
CMS 2012		227^{+15}_{-15}

	Tevatron	LHC8
MSTW 2008	$7.26^{+0.22}_{-0.21}{}^{+0.30}_{-0.25}$	$236.5^{+9.9}_{-9.8}{}^{+9.9}_{-9.1}$
NNPDF 2.1	$7.49 {}^{+0.26}_{-0.25} {}^{+0.27}_{-0.27}$	$238.0^{+11.6}_{-13.4}{}^{+9.7}_{-9.7}$
ABM 2011	$7.46 {}^{+0.22}_{-0.20} {}^{+0.16}_{-0.16}$	$214.1^{+9.4}_{-9.2}{}^{+7.9}_{-7.9}$
CT 2010	$7.36 {}^{+0.22}_{-0.21} {}^{+0.41}_{-0.31}$	$231.9^{+9.8}_{-9.7}{}^{+15.4}_{-12.6}$
D0 2011	$7.56 {}^{+0.63}_{-0.56}$	
CDF 2009	$7.50{}^{+0.48}_{-0.48}$	
CMS 2012		227^{+15}_{-15}

Comparison of NNLO_(app) Results

 $\begin{array}{l} \text{TOPIXS 1.0} \ (m_t = 173.3 \ \text{GeV}) \\ \text{Top+1} \ 1.3 \ (m_t = 173.3 \ \text{GeV}) \\ \text{HATHOR 1.3} \ (m_t = 173.3 \ \text{GeV}) \\ \text{TopNNLO} \ (m_t = 173.3 \ \text{GeV}) \\ \text{Kidonakis 2010} \ (m_t = 173 \ \text{GeV}) \\ \text{D0 2011; CDF 2009; CMS result from ICHEP 2012} \end{array}$

error bars: solid – theory, dashed – PDF($+\alpha_s$)

PDF set: MSTW 2008 NNLO

	Tevatron	LHC8
TOPIXS 1.0	$7.00^{+0.21}_{-0.31}{}^{+0.29}_{-0.25}$	$229.8^{+16.5}_{-16.7}{}^{+9.7}_{-9.0}$
top++ 1.3	$7.00 {}^{+0.20}_{-0.31} {}^{+0.29}_{-0.24}$	$230.2^{+15.3}_{-15.2}{}^{+9.8}_{-9.0}$
HATHOR 1.3	$7.07^{+0.31}_{-0.40}{}^{+0.29}_{-0.24}$	$246.8^{+13.4}_{-17.7}{}^{+10.8}_{-9.9}$
TopNNLO	$6.59^{+0.07}_{-0.41}{}^{+0.63}_{-0.47}$	$220.0^{+11.7}_{-11.8}{}^{+19.0}_{-18.5}$
Kidonakis 2010	$7.08 {}^{+0.00}_{-0.24} {}^{+0.36}_{-0.27}$	
D0 2011	$7.56^{+0.63}_{-0.56}$	
CDF 2009	$7.50^{+0.48}_{-0.48}$	
CMS 2012		227^{+15}_{-15}