

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Towards Jet Cross Sections at NNLO

Aude Gehrmann-De Ridder

HP2.4, September 2012, MPI Munich

Expectations at LHC

- Large production rates for Standard Model processes
 - single jet inclusive and differential di-jet cross section will be measured to per cent accuracy
- Allow precision determinations
 - strong coupling constant
 - parton distributions

 Provided theory description is known to the same precision: NNLO

Inclusive jet and dijet cross sections

Data can be used to constrain parton distributions

- NNLO parton distribution fits currently include DIS structure functions and inclusive Drell-Yan cross sections
- Inclusion of jet data in NNLO parton distribution fits requires NNLO corrections to jet cross sections

NNLO calculations

• Require three principal ingredients (here: $pp \rightarrow 2j$)

- two-loop matrix elements
 - explicit infrared poles from loop integral • known for all massless $2 \rightarrow 2$ processes
- one-loop matrix elements
 - explicit infrared poles from loop integral
 - and implicit poles from single real emission usually known from NLO calculations
- tree-level matrix elements
 - implicit poles from double real emission known from LO calculations

അളഞ്ഞങ്ങളണ്ട TOTT Concernance S ത്താത്താനുവന്നും പ്രത്താത്ത ั้วอออออออออออออ ഞ്ഞഞ

~00000000~0000000000

- Infrared poles cancel in the sum
- Challenge: combine contributions into parton-level generator
- need method to extract implicit infrared poles

HP2.4 Munich

NNLO calculations

Solutions

- sector decomposition: expansion in distributions, numerical integration (T. Binoth, G. Heinrich; C. Anastasiou, K. Melnikov, F. Petriello; M. Czakon)
 - applied to NNLO corrections to Higgs and vector boson production (C.Anastasiou, K. Melnikov, F. Petriello)
- subtraction: add and subtract counter-terms: processindependent approximations in all unresolved limits, analytical integration
 - several well-established methods at NLO
 - q_T subtraction at NNLO applied to Higgs and vector boson production, associated H+W production, diphoton production (S. Catani, M. Grazzini; with L. Cieri, G. Ferrera, D. de Florian, F.Tramontano)
 - antenna subtraction at NNLO for jet observables in e⁺e⁻ collisions (T. Gehrmann, N. Glover, AG)

NNLO methods: new developments

sector decomposition combined with subtraction

- use sector decomposition to compute integrated subtraction terms numerically (M. Czakon; R. Boughezal, K. Melnikov, F. Petriello)
 - applied to top quark pair production (P. Bärnreuther, M. Czakon, A. Mitov)
- non-linear mappings (C.Anastasiou, F. Herzog, A. Lazopoulos)
 - applied to Higgs decay into bottom quarks (C.Anastasiou, F. Herzog, A. Lazopoulos)
 - applied to Higgs production in botton fusion (S. Bühler, F. Herzog, A. Lazopoulos, R. Müller)
- This talk: NNLO antenna subtraction for jet observables in hadronic collisions

NNLO Subtraction

Structure of NNLO m-jet cross section at hadron colliders

$$\begin{split} \mathrm{d}\hat{\sigma}_{NNLO} &= \int_{\mathrm{d}\Phi_{m+2}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RR} - \mathrm{d}\hat{\sigma}_{NNLO}^{S} \right) \\ &+ \int_{\mathrm{d}\Phi_{m+1}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{VS} + \mathrm{d}\hat{\sigma}_{NNLO}^{MF,1} \right) \\ &+ \int_{\mathrm{d}\Phi_{m}} \left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} + \mathrm{d}\hat{\sigma}_{NNLO}^{MF,2} \right) + \int_{\mathrm{d}\Phi_{m+2}} \mathrm{d}\hat{\sigma}_{NNLO}^{S} + \int_{\mathrm{d}\Phi_{m+1}} \mathrm{d}\hat{\sigma}_{NNLO}^{VS} \end{split}$$

with:

- ► Partonic contributions: $d\hat{\sigma}_{NNLO}^{RR}$ $d\hat{\sigma}_{NNLO}^{RV}$ $d\hat{\sigma}_{NNLO}^{VV}$
- Subtraction terms for double real radiation: $d\hat{\sigma}^{S}_{NNLO}$
- Subtraction terms for one-loop real radiation: $d\hat{\sigma}_{NNLO}^{VS}$
- Mass factorization terms: $d\hat{\sigma}_{NNLO}^{MF,1} = d\hat{\sigma}_{NNLO}^{MF,2}$

Challenge: construction and integration of subtraction terms

Antenna subtraction

- Subtraction terms constructed from antenna functions
 - Antenna function contains all emission between two partons

NLO subtraction term

$$d\hat{\sigma}_{NLO}^{S} = \int d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) \sum_j X_{ijk}^0 |\mathcal{M}_m|^2 J_m^{(m)}(p_1, \dots, p_I, p_K, \dots, p_{m+1})$$

Phase space factorization

 $d\Phi_{m+1}(p_1, \dots, p_{m+1}; q) = d\Phi_m(p_1, \dots, \tilde{p}_I, \tilde{p}_K, \dots, p_{m+1}; q) \cdot d\Phi_{X_{ijk}}(p_i, p_j, p_k; \tilde{p}_I + \tilde{p}_K)$

Integrated subtraction term $\mathcal{X}_{ijk} = \int d\Phi_{X_{ijk}} X_{ijk}$

Antenna functions

Colour-ordered pair of hard partons (radiators)

- quark-antiquark pair
- quark-gluon pair
- gluon-gluon pair
- ▶ NLO (D. Kosower; J. Campbell, M. Cullen, N. Glover)
 - Three-parton antenna: one unresolved parton X_3^0
- ▶ NNLO (T. Gehrmann, N. Glover, AG)
 - Four-parton antenna: two unresolved partons X₄⁰
 - Three-parton antenna at one loop: X_3^{I}
 - Products of NLO antenna functions: $X_3^{0} \otimes X_3^{0}$
 - Soft antenna function S

Antenna subtraction: incoming hadrons

Three antenna types (NLO:A. Daleo, T. Gehrmann, D. Maitre)

Initial-initial antenna functions

▶ are crossings of final-final antennae: four-parton case

quark-antiquark antennae

$4 \qquad 4(1,0,0,1), 4(1,0,0,1), 4(1,0,0,1), 4(1,0,0,1)$	A_4^0	$A_4^0(\widehat{q},\widehat{g},g,\overline{q}),$	$A_4^0\big(\widehat{q},g,\widehat{g},\overline{q}\big),$	$A_4^0(\widehat{q},g,g,\widehat{\overline{q}}),$	$A_4^0(q,\widehat{g},\widehat{g},\overline{q})$
---	---------	--	--	--	---

- $\widetilde{A}_4^0 \qquad \widetilde{A}_4^0(\widehat{q},\widehat{g},g,\overline{q}), \, \widetilde{A}_4^0(\widehat{q},g,g,\widehat{\overline{q}}), \, \widetilde{A}_4^0(q,\widehat{g},\widehat{g},\overline{q})$
- $B_4^0 \qquad B_4^0(\widehat{q}, \widehat{q'}, \overline{q'}, \overline{q}), \ B_4^0(\widehat{q}, q', \overline{q'}, \widehat{\overline{q}}), \ B_4^0(q, \widehat{q'}, \widehat{\overline{q'}}, \overline{q})^*$
- $C_4^0 \qquad C_4^0(\widehat{q}, \overline{\widehat{q}}, q, \overline{q}), C_4^0(\widehat{q}, \overline{q}, \widehat{q}, \overline{q}), C_4^0(q, \overline{\widehat{q}}, \widehat{q}, \overline{q})^*, C_4^0(q, \overline{q}, \widehat{q}, \widehat{\overline{q}})^*$

quark-gluon antennae

$E_4^0 \qquad E_4^0\big(\widehat{q}, \widehat{q'}, \overline{q'}, g\big), \ E_4^0\big(\widehat{q}, q', \overline{q'}, \widehat{g}\big), \ E_4^0\big(q, \widehat{q'}, \overline{\widehat{q'}}, g\big), \ E_4^0\big(q, \widehat{q'}, \overline{q'}, g\big), \ E_4^0\big(q, \widehat{q'}, g\big), \ E_4$	$\left(q, \widehat{g}, g, \widehat{g} ight)$	$), D_4^0(q,$	$\widehat{g},\widehat{g},gig)$	$D_4^0(q, \tilde{q})$	$\left(\widehat{q},g,\widehat{g},g ight)$	$(g,g), D_4^0$	$D_4^0(\widehat{q},\widehat{g},$	D_4^0
	$\mathcal{E}_4^0(q,\widehat{q'},\overline{q}',\widehat{q}',\widehat{g})$	$(g), E_4^0$	$q, \widehat{q'}, \overline{\overline{q}'}, \overline{\overline{q}'}, $	$), E_4^0 (q$	$Q(\widehat{q},q',\overline{q}',\overline{q}',\overline{q}')$	$,\overline{q}',g\big), E$	$E_4^0(\widehat{q}, \widehat{q'}$	E_{4}^{0}

 $\widetilde{E}_4^0 \qquad \widetilde{E}_4^0\big(\widehat{q}, \widehat{q'}, \overline{q'}, g\big), \ \widetilde{E}_4^0\big(\widehat{q}, q', \overline{q'}, \widehat{g}\big), \ \widetilde{E}_4^0\big(q, \widehat{q'}, \overline{q'}, g\big), \ \widetilde{E}_4^0\big(q, \widehat{q'}, \overline{q'}, g\big)$

gluon-gluon antennae

F_4^0	$F_4^0(\widehat{g},\widehat{g},g,g), F_4^0(\widehat{g},g,\widehat{g},g)$
---------	--

- $G_4^0 \qquad G_4^0\big(\widehat{g}, \widehat{q}, \overline{q}, g\big), \ G_4^0\big(\widehat{g}, q, \widehat{\overline{q}}, g\big), \ G_4^0\big(\widehat{g}, q, \overline{q}, \widehat{g}\big), \ G_4^0\big(g, \widehat{q}, \widehat{\overline{q}}, g\big)$
- $\widetilde{G}_4^0 \qquad \widetilde{G}_4^0\big(\widehat{g}, \widehat{q}, \overline{q}, g\big), \ \widetilde{G}_4^0\big(\widehat{g}, q, \overline{q}, \widehat{g}\big), \ \widetilde{G}_4^0\big(g, \widehat{q}, \widehat{\overline{q}}, g\big)$
- $H_4^0 \qquad H_4^0\big(\widehat{q}, \widehat{\overline{q}}, q', \overline{q}'\big), \ H_4^0\big(\widehat{q}, \overline{q}, \widehat{q}', \overline{q}'\big)$

Integrated NNLO antenna functions

- Analytical integration over unresolved part of phase space only
 - phase space integrals reduced to masters (C.Anastasiou, K. Melnikov)
 - Final-final: $q \rightarrow k_1 + k_2 + k_3(+k_4)$, one scale: q²
 - $I \rightarrow 4$ tree level (4 master integrals)
 - $I \rightarrow 3$ one loop (3 master integrals)
 - Initial-final: $q + p_1 \rightarrow k_1 + k_2(+k_3)$, two scales: q², x

(A. Daleo, T. Gehrmann, G. Luisoni, AG)

- > $2 \rightarrow 3$ tree level (9 master integrals)
- ▶ 2 \rightarrow 2 one loop (6 master integrals)
- Initial-initial: $p_1 + p_2 \rightarrow q + k_1(+k_2)$, three scales: q², x₁, x₂
 - 2 → 3 tree level (20 master integrals) (R. Boughezal, M. Ritzmann, AG; T. Gehrmann, M. Ritzmann, AG)
 - ▶ 2 \rightarrow 2 one loop (5 master integrals) (T. Gehrmann, P.F. Monni)

Integrated initial-initial antennae

Tree-level antenna functions X₄⁰

- Kinematics: $p_1 + p_2 \rightarrow q + k_j + k_k$
- Phase space factorization (A. Daleo, T. Gehrmann, D. Maitre)

$$d\Phi_{m+2}(k_1, \dots, k_{m+2}; p_1, p_2) = d\Phi_m(\tilde{k}_1, \dots, \tilde{k}_i, \tilde{k}_l, \dots, \tilde{k}_{m+1}; x_1 p_1, x_2 p_2)$$

$$\delta(x_1 - \hat{x}_1) \,\delta(x_2 - \hat{x}_2) \,[dk_j] \,[dk_k] \,dx_1 \,dx_2$$

$$\hat{x}_1 = \left(\frac{s_{12} - s_{j2} - s_{k2}}{s_{12}} \,\frac{s_{12} - s_{1j} - s_{1k} - s_{j2} - s_{k2} + s_{jk}}{s_{12} - s_{1j} - s_{1k}}\right)^{\frac{1}{2}}$$

$$\hat{x}_2 = \left(\frac{s_{12} - s_{1j} - s_{1k}}{s_{12}} \,\frac{s_{12} - s_{1j} - s_{1k} - s_{j2} - s_{k2} + s_{jk}}{s_{12} - s_{j2} - s_{k2}}\right)^{\frac{1}{2}}$$

Fix x₁,x₂ by imposing collinear limits; Lorentz boost to frame with

$$x_1 p_1 + x_2 p_2 \to \tilde{q} ; \qquad \tilde{q}^2 = q^2$$

• Integration: $2 \rightarrow 3$ particle phase space with x_1, x_2 fixed

Integrated initial-initial antennae

- Integration of tree-level antenna functions X_4^0
 - Express phase space integrals as masters with x_1, x_2 fixed
 - Distinguish
 - ► Hard region $x_1, x_2 \neq I$: transcendentality 2
 - Collinear regions $x_1 = 1, x_2 \neq 1$ or $x_1 \neq 1, x_2 = 1$: transcendentality 3
 - Soft region $x_1 = x_2 = I$: transcendentality 4
 - Determine master integrals from differential equations in x_1, x_2
 - Antenna functions with secondary fermion pair: 10 masters (R. Boughezal, M. Ritzmann, AG)
 - Full set of antennae now completed: contains 20 masters (T. Gehrmann, M. Ritzmann, AG)
- ▶ Integrated initial-initial antennae all known: X₃⁰, X₃¹, X₄⁰

Jet production at NNLO

Double real radiation at NNLO for $pp \rightarrow 2j$

• Contributions from all tree-level $2 \rightarrow 4$ processes

• Test case: $gg \to gggg$ (N. Glover, J. Pires)

$$\begin{aligned} \mathrm{d}\sigma^{R}_{NNLO} &= N^{2} \, N_{born} \left(\frac{\alpha_{s}}{2\pi}\right)^{2} \mathrm{d}\Phi_{4}(p_{3}, \dots, p_{6}; p_{1}, p_{2}) \left(\begin{array}{c} & \\ & \frac{2}{4!} \sum_{P(i,j,k,l) \in (3,4,5,6)} A_{6}^{0}(\hat{1}_{g}, \hat{2}_{g}, i_{g}, j_{g}, k_{g}, l_{g}) J_{2}^{(4)}(p_{i}, \dots, p_{l}) \\ & + \frac{2}{4!} \sum_{P(i,j,k,l) \in (3,4,5,6)} A_{6}^{0}(\hat{1}_{g}, i_{g}, \hat{2}_{g}, j_{g}, k_{g}, l_{g}) J_{2}^{(4)}(p_{i}, \dots, p_{l}) \end{array} \right) \\ & + \frac{2}{4!} \sum_{P_{C}(i,j,k,l) \in (3,4,5,6)} A_{6}^{0}(\hat{1}_{g}, i_{g}, j_{g}, \hat{2}_{g}, k_{g}, l_{g}) J_{2}^{(4)}(p_{i}, \dots, p_{l}) \\ & + \frac{2}{4!} \sum_{P_{C}(i,j,k,l) \in (3,4,5,6)} A_{6}^{0}(\hat{1}_{g}, i_{g}, j_{g}, \hat{2}_{g}, k_{g}, l_{g}) J_{2}^{(4)}(p_{i}, \dots, p_{l}) \end{aligned}$$

three topologies according to initial state gluon positions

Antenna subtraction for $gg \rightarrow gg$ at NNLO

- ► Double real radiation: $gg \rightarrow gggg$ (N. Glover, J.Pires)
 - Subtraction terms involve only gluon-gluon antennae in all three configurations (initial-initial, initial-final, final-final)
 - F_4^0 for colour-connected double unresolved limits $F_3^0 \cdot F_3^0$ for oversubtracted single unresolved limits and colour unconnected double unresolved limits
 - $F_3^0 \cdot S$ for large-angle soft gluon radiation
 - F_3^0 for single unresolved limits
- antenna subtraction terms constructed, implemented and tested in all unresolved limits

н

Integrated double real subtraction terms

 Integrated antennae combine with either real-virtual (m+l partons) or double virtual (m partons) channel

$$\int \mathrm{d}\Phi_{m+2}\,\mathrm{d}\sigma_{NNLO}^S = \int \mathrm{d}\Phi_{m+1}\int_1 \mathrm{d}\sigma_{NNLO}^{S,1} + \int \mathrm{d}\Phi_m \int_2 \mathrm{d}\sigma_{NNLO}^{S,2}$$

- one-particle integrals
- $\int_{1} d\sigma_{NNLO}^{S,1} \quad \text{contains} \quad \mathcal{F}_{3}^{0} |M_{m+1}|^{2} \quad \mathcal{F}_{3}^{0} F_{3}^{0} |M_{m}|^{2} \quad \mathcal{S} F_{3}^{0} |M_{m}|^{2}$
 - two-particle integrals
- $\int_{2} d\sigma_{NNLO}^{S,2} \quad \text{contains} \qquad \mathcal{F}_{4}^{0} |M_{m}|^{2} \qquad \mathcal{F}_{3}^{0} \otimes \mathcal{F}_{3}^{0} |M_{m}|^{2}$ $\blacktriangleright \text{ Integrated antennae depend on momentum fraction}$
 - Integrated antennae depend on momentum fractions x₁,x₂ of initial state partons

Jet production at NNLO

Real-virtual radiation at NNLO for $pp \rightarrow 2j$

• Contributions from all one-loop $2 \rightarrow 3$ processes

► Test case:
$$gg \rightarrow ggg$$
 (N. Glover, J. Pires, AG)
$$d\hat{\sigma}_{NNLO}^{RV} = N^2 N_{born} \left(\frac{\alpha_s}{2\pi}\right)^2 d\Phi_3(p_3, \dots, p_5; p_1, p_2) \begin{pmatrix} & & \\ & &$$

- two topologies according to initial state gluon positions
- one-loop matrix elements contain explicit infrared poles

Real-virtual subtraction for $gg \rightarrow gg$

Single unresolved limit of one-loop amplitudes

HP2.4 Munich

Real-virtual subtraction for $gg \rightarrow gg$

• Structure of subtraction term $d\sigma_{NNLO}^{VS} = d\sigma_{NNLO}^{VS,a} + d\sigma_{NNLO}^{VS,b}$

dσ^{VS,a}_{NNLO} approaches dσ^{RV}_{NNLO} in all single unresolved limits
 dσ^{VS,b}_{NNLO} removes oversubtraction of explicit and implicit poles

$$d\sigma_{NNLO}^{VS,b} = \mathcal{N} d\Phi_{m+1}(p_3, \dots, p_{m+3}; p_1, p_2) \sum_{ik} \mathcal{X}_3^0(s_{ik}) \sum X_3^0 |\mathcal{M}_{m+2}|^2 J_m^{(m)}$$

such that:

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{RV} - \mathrm{d}\hat{\sigma}_{NNLO}^{VS} - \int_{1}\mathrm{d}\hat{\sigma}_{NNLO}^{S,1} - \mathrm{d}\hat{\sigma}_{NNLO}^{MF,1}\right) = 0$$

strong check on explicit pole cancellation in real-virtual channel

Real-virtual subtraction for $gg \rightarrow gg$

Check of the subtraction terms

- choose scaling parameter x for each limit
- generate phase space trajectories into each limit
- require reconstruction of two hard jets
- compute ratio (matrix element)/(subtraction term): $|M_{RV}|^2/S_{term}$
- Example: soft limit : $s_{ij} \simeq s$

- Ratio approaches unity in all unresolved limits
- Strong check on implementation of subtraction terms

HP2.4 Munich

Jet production at NNLO

Double-virtual radiation at NNLO for $pp \rightarrow 2j$

- Contributions from all one-loop $2 \rightarrow 2$ processes
- Test case: $gg \rightarrow gg$ (N. Glover, J. Pires, T. Gehrmann, AG)

$$\begin{aligned} \mathrm{d}\hat{\sigma}_{NNLO}^{VV} = & N^2 \; N_{born} \left(\frac{\alpha_s}{2\pi}\right)^2 \mathrm{d}\Phi_3(p_3, p_4; p_1, p_2) \left(\begin{array}{c} & & \\ & \frac{2}{2!} \; \sum_{P(i,j) \in (3,4)} A_4^2(\hat{1}_g, \hat{2}_g, i_g, j_g) J_2^{(2)}(p_i, p_j) \\ & & + \frac{1}{2!} \; \sum_{P(i,j) \in (3,4)} A_4^2(\hat{1}_g, i_g, \hat{2}_g, j_g) J_2^{(2)}(p_i, p_j) \right) \end{aligned}$$

- two topologies according to initial state gluon positions
- contains (two-loop*tree) and (one-loop)²
- explicit infrared poles up to 1/e⁴ from loop integrals

Double virtual channel

- Explicit poles of double virtual contribution cancel with
 - integrated double real subtraction terms

 $\int_{2} d\sigma_{NNLO}^{S,2} \quad \text{of the form} \quad \mathcal{F}_{4}^{0} |M_{m}|^{2} \quad \mathcal{F}_{3}^{0} \otimes \mathcal{F}_{3}^{0} |M_{m}|^{2}$ $\text{integrated one-loop subtraction terms} \quad \int_{1} d\sigma_{NNLO}^{VS} \quad \text{of the form} \quad \mathcal{F}_{3}^{1} |M_{m}|^{2} \quad \mathcal{F}_{3}^{0} |M_{m}|_{1l}^{2}$

- mass factorization counter terms $d\sigma^{MF,2}_{NNLO}$
- In all three configurations (final-final, initial-final, initial-initial)

Double virtual channel

 \blacktriangleright For purely gluonic contributions to $pp \rightarrow 2j$, we obtain

$$\mathcal{P}oles\left(\mathrm{d}\hat{\sigma}_{NNLO}^{VV} + \int_{2}\mathrm{d}\hat{\sigma}_{NNLO}^{S,2} + \int_{1}\mathrm{d}\hat{\sigma}_{NNLO}^{VS} + \mathrm{d}\hat{\sigma}_{NNLO}^{MF,2}\right) = 0$$

- Highly non-trivial check of analytic cancellation of infrared singularities between double-real, real-virtual and doublevirtual corrections
- Proof of principle for NNLO antenna subtraction method applied to hadronic collisions

Conclusions

- NNLO antenna subtraction method generalized to hadronic collisions
 - completed analytic integration of all antenna functions for one or two partons in the initial state: full set of integrated antennae now available in all configurations
- \bullet Proof-of-principle implementation for $gg \to gg$ contribution to $pp \to 2j$
 - subtraction terms in double real and real virtual channel
 - constructed and implemented
 - observe point-wise convergence for matrix element/subtraction term
 - Double virtual channel
 - observe analytical cancellation of all infrared poles
- Parton–level generator : In progress