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Low temperature and 
timing properties of SIPMs

G.Collazuol 
University of Padova and INFN

Overview
- Introduction
- Low T features, measurements, issues 
- Timing features, measurements, issues
- Conclusions
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Introduction: building block of a SiPM →  GM-APD

Diode reverse-biased above Vbreakdown

n+ π
Vbias p

depletion region
p+

hν e– h+

t1

• 0<t<t1: avalanche spreading

h+

• t1<t: self-sustaining current 
       (limited by series R)

To detect another photon need a 
quenching mechanism. Two solutions: 
• large resistance: passive quenching
• analog circuit: active quenching

A.Spinelli Ph.D thesis (1996) 

VBIAS

VD

t

i

t0 t1 t2

t

vD

vBD

No quenching:
steady current

Photon @ center of the cell

Photon @ edge of the cell

Very short
rise time

E
electric field
in the reversed
bias diode

• t=0: carrier initiates the avalanche

Avalanche processes in Si: studied 
since +50ys and widely exploited...
… not understood in the very detail
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Reference - SiPM diode FBK

C.Piemonte NIM A 568 (2006) 224 

Substrate
low resistivity contact

(500 µm)

Fully depleted region
(4 µm)

Shallow-Junction 

• n+ on p abrupt junction structure
• Anti-reflective coating (ARC) optimized for λ~420nm
• Very thin (100nm) n+ layer: “low” doping n+ layer 
     → minimize Auger and SHR recombination
• Thin high-field region: “high” doping p layer (limited by tunneling breakdown) 
     → fixes VBD  junction well below  V BD  at edge
• RQ by doped polysilicon
• Trenches for optical insulation (low cross-talk)
• Fill factor: 20% - 80% 

Optimization for the blue light (420nm)

Shallow n+ layer
(0.1 µm)

≈≈

n+

p+  ≈

Critical region:
• Virtual guard ring to prevent 
  edge-breakdown 
  (n+ layer extends 
   beyond p layer on π)
• Leakage current
• Surface charges

Trench   covered 
with   metal 

n+
polysilicon RQ

p

π epitaxial

Active volume
 no micro-plasma's !
 (lower VDB due to 
 oxide precipitates)
 high quality epitaxial
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OFF condition: avalanche quenched, switch open,  
capacitance charged until no current flowing
from VBD  to VBIAS with time constant RqxCd = τQuenching (→ recovery time)

ON condition: avalanche triggered, switch closed
Cd discharges to VBD with a time constant RdxCd= τdischarge, 
at the same time  the external current asymptotic grows to (Vbias-Vbd)/(Rq+Rd)

Vbias

APD     GM-APD

Haitz JAP 35 (1964)

P10 = turn-off probability
probability that the 
number of carriers
traversing the high-field 
region fluctuates to 0

P01 = turn-on probability 
probability that a 
carrier traversing the 
high-field region triggers 
the avalanche

Operation principle of a GM-APD
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t

i

exp(-t/τq)

Signal shape, Gain and Recovery time

If Rq is high enough the internal current decreases at a level such that 
statistical fluctuations quench the avalanche: need ilatch ~ ∆V/(Rq+Rd) ~10µA

1-exp(-t/τd)

ilatch 

99% recovery time ~ 5 τQ

Recovery time:  increases at low T due to  polysilicon Rq 
while Cd is independent of T

Gain~Cd ∆V →  independent of T
at fixed Over-Voltage (∆V)

Fast Capacitor (cell) discharge and slow recharge (roughly speaking)

“Overvoltage”
∆V ≡ (Vbias-VBreakdown)

Rise time         Falling time (recovery)

With usual Rqvalues turn-off time is very short O(1ns)

τd = RdCd   ≪   τq = RqCd  

also rise time expected to be T dependent (silicon Rd vs T)
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Single cell model → (Rd||Cd)+(Rq||Cq)
SiPM + load → (||Zcell)||Cgrid + Zload

Signal = slow pulse (τd (rise),τq-slow (fall)) + 
+ fast pulse (τd (rise),τq-fast (fall))

•τd (rise)~Rd(Cq+Cd)
•τq-fast (fall) = Rload  Ctot      (fast; parasitic spike)
•τq-slow (fall) = Rq (Cq+Cd)  (slow; cell recovery)

F.Corsi, et al. NIM A572 (2007) 

fastslow

SiPM equivalent circuit (detailed model)

R
d

Vmax
• Rise: Exponential
• Fall: Sum of 2 exponentialsPulse shape

V t ≃ Q
CqCd


Cq

C tot
e

−t
FAST

Rload

Rq

Cd

CqCd
e

−t
 SLOW 

Cd = 10fF
Cq = Cd
Cg = 10pF
Rq= 400kΩ
Rq= 50Ω → on Ctot 'prompt' charge Qfast = Q  Cq/(Cq+Cd) 

→ peak at Vmax~ Qfast/Ctot is independent of Rload

Sp.Charge R x Cd,q; further filtered by 
parasitic inductance, stray C, ...  (Low Pass)

Cq → fast current supply path in the beginning of avalanche
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Single cell model → (Rd||Cd)+(Rq||Cq)
SiPM + load → (||Zcell)||Cgrid + Zload

Signal = slow pulse (τd (rise),τq-slow (fall)) + 
+ fast pulse (τd (rise),τq-fast (fall))

•τd (rise)~Rd(Cq+Cd)
•τq-fast (fall) = Rload  Ctot       (fast; parasitic spike)
•τq-slow (fall) = Rq (Cq+Cd)   (slow; cell recovery)

fastslow

Pulse shape: dependence on Temperature

Pulse shape:
The two current components show 
different behavior with Temperature

→ fast component is independent of T 
because stray Cq couples to external Rload 

H.Otono, et al.  PD07
HPK MPPC

R
d
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→ Improved SiPM performances at low temperature (w/ respect to T room):
  

1) lower dark noise by several orders of magnitude
2) after-pulsing probability constant down to ~100K (then blow up)
3) PDE variations up to ±50% (depending on λ) down to ~100K
4) better timing resolution
5) better Vbreakdown stability against variations of T

Overview – SiPM properties at low T

Complete characterization of FBK SIPM in the temperature range 50K<T<320K

1) junction characteristics: forward and reverse (breakdown) 
2) gain, dark current, after-pulses, cross-talk
3) photon detection efficiency (PDE)

→ SiPM is an excellent alternative to PMT... 
...particularly at low temperature !

G.C. et al NIM A628 (2011) 389
and paper in preparation
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Experimental SetupVacuum vessel (P < 10-3 mbar)

Halogen Lamp / Pulsed Laser
Monocromator (200-900nm)
and neutral filters
Quartz fibers for carrying light to 
- Calibrated Photodiode (outside) 
- SiPM (inside vessel) 

Cryo-cooler
(50K<T<300K)

Amplifier UV LED (380nm)
+ fibers to SiPM
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Experimental setup

• Care against HF noise 
 → feedthroughs !!!

• Amplifier Photonique/CPTA
 (gain~30, BW~300MHz) 

• Lecroy o.scope, 1GHz, 20GS/s

Vbias and current measurements

Pulse/Waveform sampling

• Keytley 2148 
 Voltage/Current  source/meter

RL
CC

Cb

-Vb

GND

Vout

Rb
hν

SiPM

Temperature control/measurement
• Close cycle, two stages, He cryo-cooler 
  and heating with low R resistor

• Vacuum well below 10-3 mbar
• thermal contact (critical) with cryo-cooler 
 head: SIPM within a copper rod + kapton
 (electrical insulation)  

• T measurement with 3 pt100 probes
• Measurements on SiPM carried after 
   thermalization, ie all probes at the same T
• check junction T with forward characteristic
   

SiPM samples
FBK SiPM (2008) – 1mm2

(Vbr~33V, fill factor~20%)
• n+-on-p shallow junction
• 4µm fully depleted region
 (active volume)

• no protective epoxy
 (no epoxy cracks at low T)

Light sources
• CW: halogen lamp and UV LED (λ~380nm)
• Pulsed: laser (30ps rms, λ~405nm)
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I-V measurements: forward bias 

Forward current 

I forward~C A T [exp 
q V d

 k T
−1 ]

η ideality factor
Diffusion current dominating: η → 1

Recombination current dominating: η → 2

1

3 Ohmic behavior at high current

Linear fit → Rseries ~ Rq / Ncells

2       Voltage drop (Vd) decreases 
linearly with T decreasing 
(e.g. at 1µA)

η ~ 1

Shockley et al. Proc. IRE 45 (1957)
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I-V measurements: forward bias 
Voltage drop at fixed forward current → precise measurement of junction T...

constant current
injection
Iforward = 1µA

T (K)

V dr
op

 (m
V)

• (almost) linear dependence with slope dVdrop/dT|1µA ~ -3mV/K
(we don't see freeze-out effects down to 50K )

• direct and precise calibration/probe of junction(s) Temperature

V d=
E g

q
− k T

q
ln C  AT 

I forward

… otherwise not trivially measured !for T→0 ideally Vd→ Eg 
(freeze-out effects apart)
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Series Resistance vs T
Two ways for measuring series resistance (Rs)

1) Fit at high V of forward characteristic
2) Exponential recovery time (afterpulses envelope)

● fit Ifwd-V 
◌ fit exp recovery

5µs

Measurements (1) and (2)  consistent 
→ dominant effect from 
quenching resistor Rq 
(→ series R bulk gives smaller 
contribution)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-1.0E -08 1.0E -08 3.0E -08 5.0E -08 7.0E -08
T ime (s )
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)

Overlap of waveforms 

Recovery time exponential 

After-pulsing 
more probable at short delays 

Afterpulses envelope

Empirical fit:
Rq T ~0.13 1300/T e300 /T M 

After-pulses
envelope 

After-pulses
envelope 

1µs

ca
rr
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rs

 fr
ee
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R q

Note: SiPM for low T applications must have appropriate 
quenching R (not quenching at room T !) 
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I-V measurements: reverse bias 

At high T ~80 mV/K
(fit above 240K)

Fit:  linear + quadratic (V > Vbreakdown)

Vbreakdown vs T

Avalanche breakdown voltage decreases due 
to larger carriers mobility at low T → larger ionization rate
(at fixed electric E field)
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V breakdown vs T 

dV
br
/d

T 
(V

/K
)

 ∆vbr /Vbr /∆T
~0.20 %/K

∆vbr /Vbr /∆T
~0.25 %/K

 T (K)

Temperature coefficient

Consistent with Breakdown calculations 
for abrupt junctions with p-region doping 
at the level of 1017 cm-3  (*)

Improved 
stability 
at low T

Breakdown Voltage 

(*) E field profile of FBK SiPMs described in the paper: 
Serra et. al. (FBK)  “Experimental and TCAD Study of 
Breakdown Voltage Temperature Behavior in n+/p 
SiPMs” IEEE TNS 58 (2011) 1233 

Vbr measured by fitting single 
p.e. charge vs bias voltage
(pulsed mode)

the line is for 
eye guide
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Dark current vs T (constant ∆V)

1) Generation/Recombination 
SRH noise (enhanced by
trap assisted tunneling) 

Tunneling noise dominating for T<200K 
(FBK devices have E field quite peaked)

Ireverse~T1.5exp−Eact

KB T

2) Band-to-band Tunneling 
noise (strong dependence on 
the Electric field profile)

note: 
negative T 
coefficient

Conventional
SRH

trap 
assisted
tunneling

Main noise mechanisms (*) 

 (*) the contribution to noise from 
diffusion of minority carriers is 

negligible in this T range
Thermal noise mainly due to 
G-R in the high E Field region
(not the whole depletion region)

x1
00

0
x1

0
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Dark count rate vs T  (constant ∆V)

Measurement of 
counting rate of ≥1p.e. 
at fixed ∆V=1.5V
(→ constant gain)

? Additional structure
? carriers freeze-out (*)

Activation energy Eact~0.72eV 
Note: Eact should be ~ Eg but 
tunnelling makes effective gap 
smaller

DCR~T1.5exp −Eact

2KBT

SR
H 

fie
ld

 e
nh

an
ce

d

Tunneling

∆V = 1.5V

(*) carrier losses at very low T 
due to ionized impurities acting 
as shallow traps
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After-Pulsing
Carrier trapping and delayed release

Pafterpulsing t  = Pc⋅
exp−t / 


⋅Ptrigg

Pc  : trap capture probability
∝ carrier flux (current) during avalanche  ∆∝ V 

 ∝ N traps 

τ : trap lifetime
 depends on trap level position 

avalanche triggering probability
 ∝ ∆V(t)

quadratic
dependence
on ∆V

~Few % level 
at 300K ∝ ∆V2

fast
components

slow
   components

S.
Co

va
, A

.L
ac

ai
ta

, 
G

.R
ip

am
on

ti,
 IE

EE
 E

D
L 

(1
99

1)

Partially sensitive to after-pulsing during recovery
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After-Pulses vs T (constant ∆V)

• Few % at room T
• ~constant down to ~120K 

• several % below 100K

T decreasing: ? increase of 
characteristic time constants 
of traps (τtraps) is compensated 
by increasing cell recovery 
time (Rq)

T<100K: additional trapping centers 
activated ? possibly related to onset of 
carriers freeze-out [under investigation]  

Measurement by waveform analysis: 
- trigger on single carrier pulses (with no preceding pulses
within ∆t=5µs), count subsequent pulses  within ∆t=5µs
(find the after-pulsing rate rAP)
- Subtract dark count contribution
- extract after-pulsing probability PAP 
corrected for after-pulsing cascade

P AP=
r AP

1r AP

→ Analysis of life-time evolution vs T 
of the various traps (at least 3 types at Troom)
[under investigation]

After-pulses
envelope 

∆V = 1.5V
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DR, AP, Gain, X-talk vs ∆V   (constant T) 

Gain and Cross-Talk are independent of T

Dark Noise Rate 
dumped at low T

After-Pulsing swift 
increase below 100K

SRH vs Tunneling
different slope δDR/δ∆V
(cfr PDE vs ∆V) 

PAP  ~ independent
of T above 100K 

(slight reduction expected 
due to lower PDE for 
large λ at low T)
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Photo-Detection Efficiency (PDE) vs ∆V and λ

Reduced because
avalanche triggered 
by holes (and ARC)

Reduced because
low QE

PDE dependence on λ  
(at different ∆V) – room T

PDE =
εgeom (fraction of active area) 

x
 Transmission efficiency 

x
QE (efficiency of photo-conversion) (*)

x
Ptrigg (avalanche triggering probability)

 

SiPM with εgeom ~22%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

30 31 32 33 34 35
Bias voltage (V)

P
D

E

L=400nm
L=425nm
L=450nm
L=475nm
L=500nm
L=550nm

SiPM with εgeom ~50%

PDE dependence on ∆V
(at different λ) – room T

Saturation
above ∆V~3V

Linearity below 
∆V~3V

Expected to be T dependent

(*) factor (1-Probability of recombination) 
should also be included  
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PDE vs λ (constant ∆V=2V) - halogen lamp (CW)

PDE(a.u.) is rescaled from absolute 
PDE measurements at 300K

(normalized at the 
peak of the 
distribution 

at 300K)

PDE spectrum
at low T
peaks at 

shorter wavelengths 

Measure →  • Isipm / G = current drawn by SiPM / SiPM Gain 
• Iphotons= rate of photons by calibrated photo-diode

→ Find: PDEa.u.= Isipm / G / Iphotons 

The measured PDE a.u. 
differs from  the 
absolute PDE by a 
single normalization  
factor due to a 
different photon 
acceptance 
of SiPM wrt 
calibrated diode 
(different light 
paths)
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PDE vs T (constant ∆V=2V) - halogen lamp (CW)

Normalization 
to PDE(room T)

When T decreases we expect:

1) silicon Egap increasing
→  longer attenuation length 
→  lower QE (for longer λ)

2) mobility increasing
→ larger impact ionization
→ larger trigg. avalanche P01

3) carriers freeze-out 
onset below 120K
→ loss of carriersfreeze-out (3) 

??? interplay between (1) and (2): modulation

λ

PDE= Isipm / G / Iphotons 

Re
la

tiv
e 

PD
E

lines are for 
eye guide
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PDE vs T (∆V=2V) – LED (CW) and Laser (pulsed) 

T (K)

PDE dependence on T at constant gain: 
similar results with LED (cont. light - 380nm) 
and Laser (pulsed light – 405nm)

PD
E(

T)
 / 

PD
E(

29
7K

)

PDE (T) ≡ ISiPM (T) / ILED

Normalization with PDE at T=297K 

APD at 400nm < λ < 700nm  
Johnson et al, IEEE NSS 2009

Additional effects in APD
(depletion region depends on T, ...)

Some features similar to 
APDs (sub-geiger mode)

LED (CW) λ = 380nm

Re
la

tiv
e 

PD
E
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PDE vs ∆V (constant T) – pulsed laser (405nm)
Measure → 
• Ipe= average number of p.e. in coincidence with laser trigger x trigger rate 
• Iphotons= average rate of photons measured by calibrated photo-diode  

→ Find: PDE= Ipe / Iphotons 
 

Saturation starts 
earlier at low T

The measured PDE a.u. 
differs from  the 
absolute PDE by a 
single normalization  
factor due to a 
different photon 
acceptance 
of SiPM wrt 
calibrated diode 
(different light 
paths)
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Understanding PDE vs T

Si

≈≈

n+

p

π

p+  
substrate
low-R
500 µm

fully
depleted
region
4 µm
(epitaxial)

≈

Tunneling Breakdown

Avalanche
multiplication
Breakdown

Sze and Gibbons, 
Appl. Phys Lett. 8 (1966)

Light absorption in SiliconDoping and Field profiles (FBK) 

VBD versus doping concentration 

Shallow
Junction

Serra et al (FBK) IEEE TNS 58 (2011) 1233 
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Understanding PDE vs T: 1D toy model 

Avalanche triggering probability
for electrons and holes (Ptriggere, Ptriggerh)
(using differential equations method after
Oldham et al, IEEE TNS 19 (1972) 1056)E field profile +

     + impact ionization rate

P tr
ig

ge
r

electrons

holes

∆V=0.5V

∆V=2V
∆V=4V
∆V=8V

∆V=0.5V
∆V=2V

∆V=4V

∆V=8V
T=50,150,...,300K

T=50,150,...,300K

Breakdown voltage vs T

calculate
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Understanding PDE vs T: 1D toy model

avalanche triggering probability +

+ light absorption length in Si (1/α)

T=50,150,...,300K

PDE as a function of (λ ,T,∆V)
obtained by the convolution of
Ptrigg(x) and α exp(-αx)
(integrated over the depletion layer)

Rajkanan et al, Solid State Ele 22 (1979) 793

Accounting Egap variations with T, etc... 

T=50,150,...,300K

λ=400nm

∆V (V)

PDE

saturation starts
earlier at low T 

calculate
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Understanding PDE vs T: 1D model

contribution of 
holes to PDE

∆V = 2V

λ (µm)

T=150K
T=250K

T=300K

T=50K

1) main contribution to PDE from electrons
→ PDE distribution shifted toward short λ
at low T because of larger absorption length 
(photo-generation deeper into depletion 
layer →  gain for shorter λ, loss for longer λ)

(see also PDE vs T)

∆V = 2V

T (K)

λ=400nm

λ=600nm

λ=800nm

3) freeze-out 
not included 
in the model

4) something else 
is missing: need 
to explain PDE 
decreasing with T 
for 250K<t<300K

to be understood !

2) tunneling effects not 
included in the model
(enhancement of PDE,
interplay with band gap
variations with T)

5) Recombination 
not includedl
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• Intrinsic timing: discussion of intrinsic timing properties based on 
measurements of single photon timing resolution 

 

• A few comments about timing related to signal shape

Overview – SiPM timing properties

G.C. et al NIMA 581 (2007) 461
and paper in preparation
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GM-APD avalanche development
(1) Avalanche “seed”: free-carrier 
concentration rises exponentially 
by "longitudinal" multiplication

(1') Electric field locally lowered 
(by space charge effect) towards
breakdown level

Multiplication is self-sustaining 
Avalanche current steady until 
new multiplication triggered 
in near regions

(2) Avalanche spreads 
"transversally" across the junction
 
(diffusion speed  ~up to 50µm/ns 
enhanced by multiplication) 

(2') Passive quenching mechanism 
effective after transverse 
avalanche size ~10µm 

(Otherwise avalanche spreads  over 
the whole active depletion volume 
→ avalanche current reaches a final 
saturation steady state value) 

 

Longitudinal 
multiplication

Duration ~ few ps

Internal current
up to ~ few µA

Transverse 
multiplication

Duration ~ few 100ps

Internal current
up to ~ several 10µA

A.Spinelli 
Ph.D thesis (1996) 

Photon @ center of the cell

Photon @ edge

Simulation w/o quenching:
→ steady current reached

time (ns)

time (ps)time (ps)

x1
00
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→ timing resolution improves at high Vbias 

→ E field profile affects τ and Rsp (wider E field profile → smaller R)
   (should be engineered when aiming at ultra-fast timing)  
→ T dependence of timing through τ and D
→ slower growth at GAPD cell edges → higher jitter at edges
    reduced length of the propagation front  

GM-APD avalanche transverse propagation

dI
dt

= dI
dS

dS
dt

~ D
Rsp

Rate of current production:

S = surface of wavefront  (ring of area 2π r∆r) 
Rsp (S) = space charge resistance   ~ w2/2ε v~ O(50 kΩ µm2)
vdiff ~ O(some 10µm/ns)
D = transverse diffusion coefficient ~ O(µm2/ns)
τ = longitudinal (exponential)  buildup time ~ O(few ps)

dI
dS =J =

V bias

RspS 

dS
dt

= d
dt

2  r t  r=2 vdiff  r=4  r  D


Avalanche transverse propagation by a kind 
of shock wave: the wavefront carries a 
high density of carriers and high E field gradients 
(inside: carriers' density lower and E field decreasing
toward breakdown level)   

r ∆r

~ 1
1− Emax /Ebreakdown 

n

(Internal) current rising front:
the faster it grows, the lower the jitter
dI/dt → understand/engineer timing 

features of SiPM cells

SiPM cell
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GM-APD timing jitter: fast and slow components

Multiplication assisted 
diffusion

Photon assisted 
propagation

Statistical fluctuations in the avalanche:

• Longitudinal build-up (minor contribution)

• Transversal propagation (main contribution): 
 

 
 

1) Fast component: gaussian 
    with time scale O(100ps)  

Fluctuations due to 
a) impact ionization statistics

→ Jitter at minimum → O(10ps)
(very low threshold → not easy)

b) depth of photo-generation 
position due to finite drift time 
in low E field region (even at 
saturated velocity)

→ note: saturated ve ~ 3 vh 

Fluctuations due to 
a) variance of the transverse 
diffusion speed vdiff

b) injection position statistics

→  Jitter → O(100ps)
(usually threshold set high)

- via multiplication assisted diffusion         
(dominating in few µm thin devices)
A.Lacaita et al. APL and El.Lett. 1990

- via photon assisted propagation 
(dominating in thick devices – O(100µm))
PP.Webb, R.J. McIntyre RCA Eng. 1982
A.Lacaita et al. APL  1992
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Neutral regions underneath the junction : timing tails for long wavelengths

(Neutral regions in APD entrance: timing tails for short wavelengths)

S.Cova et al. NIST Workshop on SPD (2003)

2) Slow component: non-gaussian tails with time scale O(ns)

tail lifetime: τ ~ L2 / π2 D ~ up to some ns
L = effective neutral layer thickness
D = diffusion coefficient

Carriers photo-generated in the neutral regions above/beneath the 
junction and reaching the electric field region by diffusion

GM-APD timing jitter: fast and slow components

 G.Ripamonti, S.Cova Sol.State Electronics (1985)
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Measurements - experimental setup

Pump Laser
Millenia V (Spectra-physics)
solid state CW visible laser

Mode-locked
Ti:sapphire Laser
Tsunami (Spectra-physics)
femtosecond pulsed laser

wavelength: tuned at 800±15 nm
pulse width: ~ 60 fs FWHM
pulse period: ~ 12 ns
pulse timing jitter < 100 fs

pump laser Ti:sappire
laser SHG

Crystal for Second 
Harmonic Generation (SHG) 
conversion 800 nm → 400 nm
efficiency at % level

Filters
blue + neutral
for rejecting IR light
and tune intensity

Dark box

SiPM +
amplifier

Low noise LV
suppliers

LeCroy SDA 6020
Analog bandwidth: 6GHz
Sampling rate: 20GS/s
Vertical resolution: 8 bits

External trigger from
Ti:sappire laser 
signal

Electronics
I → V conversion via RL (500Ω)
Two stage voltage amplification (= x50)
based on high-bandwidth low-noise 
RF amplifier: gali-5 (MiniCircuits) 
Zin= 50Ω

RL
CC CC CC

Cb

-Vb

GND

Vout

Rs

gali5 gali5

hν

SiPM

Data taking conditions:
• different  Vbias
• both at 800 nm and 400 nm
• with different light intensities 
  (counting rates 
  in the range 10÷20 Mhz
  ie 15÷30 KHz per single cell)
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Waveform analysis: method
(1) Selection of candidate peaks:
• single photon peaks
• proper signal shape
• low instantaneous intensity 
  (no activity before/after within 50ns)
• low noise during the previous 10 ns
  (typical noise ~ 1mV rms) 

(2) Peak reconstruction
• optimum time reconstruction
• amplitude and width (baseline 
  shift correction) 

(3) Time difference ∆t between 
      consecutive peaks    

1 p.e.

2 p.e.

∆t

Laser 
period

NOTE: good timing properties even up to 10MHz/mm2 photon rates
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Waveform (1 p.e.)

time (ns)

FBK ∆V = 3V

FBK

CPTA

HPK

Average waveform 
(the band is rms)

Risetime (10%-90%) 
(dominated by electronics contribution)Am

pl
itu

de
 (V

) Additional contribution to rms
(afterpulses)

av
al

an
ch

e

dI
dt

~ D
Rsp 

~ 1
1− Emax /Ebreakdown 

n

Note:



38/49G.
Co

lla
zu

ol
 - 

LI
GH

T1
1 

3/
11

/2
01

1

Waveform analysis: optimum timing filter
Different methods to reconstruct the time of a peak:

✗ parabolic fit to find the peak maximum
✗ average of time samples weighted by the waveform derivative      
✔ digital filter: weighting by the derivative of a reference signal 
    → optimum against (white) noise (if signal shape fixed)

∫Va  t
∂Vr  t−t0

∂ t
dt=0

Digital filter to minimize N/S 
for timing measurements:
solve the following equation on t0 :

Va = measured signal
        (includes noise)
Vr  = reference signal
 t0 = reference time

see e.g. Wilmshurst “Signal recovery from noise in electronic instrumentation” 
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fit gives reasonable χ2  in case of an 
additional exponential  term exp(-|∆t|/τ)

• τ ~ 0.2÷0.8ns in rough agreement 
  with diffusion tail lifetime: τ ~ L2 / π2 D
  if L is taken to be the diffusion length
• Contribution from the tails ~ 10÷30%
  of the resolution function area

Overvoltage=4V

λ=400nm

Overvoltage=4V

λ=800nm

FIT: gauss+const

FIT: gauss+const
+exponential

mod(∆t,Tlaser) [ns]

mod(∆t,Tlaser) [ns]

Distributions of the difference in time between successive 
peaks (modulo the measured laser period Tlaser=12.367ns) 

Single Photon Timing Resolution (SPTR)
Gaussian        +    Tails (long λ)
rms~50-100 ps        ~ exp (-t / O(ns))
                                    contrib. several %
                                     for long wavelengths

Data at λ=400nm 
fit gives reasonable χ2 

with gaussian (σt
fit) +

constant term (dark noise contribution)

The detector resolution is obtained by 
σt

fit/√2 

Analysis of the distributions of the t difference  
between successive peaks
(modulo the laser period Tlaser=12.367ns) 
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FBK – single photon timing res. (SPTR)

n+ πp
depletion region

p+

hν

e– h+e– h+

high-field 
region

depletion regiondepletion region

neutral
region

• λ = 800 nm
• λ = 400 nm
— contribution from 
    noise and method
    (not subtracted)

eye guide

Typical 
working region

G.Collazuol et al NIMA 581 (2007) 461

Better resolution for 
short wavelengths:
carriers generated 
next to the high E 
field region

electron 
injection 
hole 
injection 
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• λ = 800 nm
• λ = 400 nm
— Contribution from 
    noise and method
    (not subtracted)

eye guide

FBK devices - shallow junction

SiPM type with optical trenchSiPM type without optical trench

(Devices with the same high field structure)

p-
su

bs
tr

at
e

ho
le

s

p-
 e

pi
pn+

el
.

FBK
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Hamamatsu - shallow junction

• λ = 800 nm
• λ = 400 nm

eye guide

HPK-2HPK-3

1600 cells (25x25µm2) 400 cells (50x50µm2)

G.Collazuol et al (in preparation) Suggested
Operating range

n-
su

bs
tr

at
e

n-
 e

pi
np+

el
.

ho
le

s HPKelectron 
injection 

hole 
injection 
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CPTA/Photonique - deep junctions

• λ = 800 nm
• λ = 400 nm

a) Green-Red sensitive 
SSPM 050701GR_TO18

b) Blue sensitive
SSPM 050901B_TO18

eye guide
Thick structures,
buried junctions ?

a) n+/p 
→ electrons drift

b) p+/n  
→ holes drift (ve/3)
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SPTR: position dependence

Data include the system jitter 
(common offset, not subtracted)

K.Yamamoto 
IEEE-NSS 2007

K.Yamamoto PD07

Larger jitter if photo-conversion 
at the border of the cell

Due to: 
1) slower avalanche 
front propagation

2) lower E field 
 at edges
→ cfr PDE vs position 
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SPTR: timing at low T

Timing: improves at low T
Lower jitter at low T due to 
higher mobility:

(Over-voltage fixed)

G.C. (2011, unpublished)

Setup:
- Cryo-cooler setup
described before 
- PicoQuant laser 
(40ps FWHM, λ~405nm)
- Wide band amplifier
(used for timing 
measurements)

dI
dt

~ D
Rsp

Note:

FBK
devices

a) avalanche process is faster
b) reduced fluctuations 
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Timing properties →  fast timing devices 

 time
2 =

amplitude
2

∫dt [ df t 
dt

]
2

Single Threshold

Timing with optimum filtering:
 
→ best resolution with 
f'(t) weighting function

 time=
 amplitude

df t 
dt

Timing by (single) threshold:
 
→ time spread proportional to 
1/rise-time and noise

Pulse sampling and Waveform analysis:
 
Sample, digitize, fit the (known) waveform
→ get time and amplitude

time
2 =

amplitude
2

N samples∫dt [ df t 
dt

]
2

V.Radeka IEEE TNS 21 (1974) and
vast literature thereafter
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Single cell model → (Rd||Cd)+(Rq||Cq)
SiPM + load → (||Zcell)||Cgrid + Zload

Signal = slow pulse (τd (rise),τq-slow (fall)) + 
+ fast pulse (τd (rise),τq-fast (fall))

•τd (rise)~Rd(Cq+Cd)
•τq-fast (fall) = Rload  Ctot      (fast; parasitic spike)
•τq-slow (fall) = Rq (Cq+Cd)  (slow; cell recovery)

fastslow

SiPM equivalent circuit

R
d

Vmax

Pulse shape V t ≃ Q
CqCd


Cq

C tot
e

−t
FAST

Rload

Rq

Cd

CqCd
e

−t
SLOW 

Cd = 10fF
Cq = Cd
Cg = 10pF
Rq= 400kΩ
Rq= 50Ω

Q fast

Q slow
~

Cq

C d
→ charge ratio

→ peak height ratio V fast
max

V slow
max ~

C q
2 Rq

C d C tot Rload

increasing with Rq and 1/Rload 
(and Cq of course)
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Enhancing Cq does improve 
timing performances

Yamamura et.al. at PD09

Optimizing signal shape for timing (SPTR)

→ peak height ratio V fast
max

V slow
max ~

C q
2 Rq

C d C tot Rload

Note: 
The steep falling front of the fast peak 
could be exploited too for optimum timing

 time
2 =

amplitude
2

N samples∫dt [ f ' t ]2
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Single p.e. signal slow falltime component  τfall = Rq (Cd+Cd) 
strongly affects multi-photon signal risetime

Signal shape for timing - many photons

PMT - 511keV in LYSO 

various gaussian
signal shapes 

convolution 
1pe ⊗ scint.exp.

SiPM - 511keV in LYSO SiPM - 511keV in LYSO 

PMT – 1 p.e. SiPM – 1 p.e. SiPM – 1 p.e. 

changing 
risetime 

changing 
falltime 

convolution 
1pe ⊗ scint.exp.

convolution 
1pe ⊗ scint.exp.

co
nv

ol
ut

io
n 
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Enhancing Cq and  Rq does 
improve timing performances

Optimizing shape for timing - many photons

→ peak height ratio V fast
max

V slow
max ~

C q
2 Rq

C d C tot Rload

FBK devices type:

~100MHz at DV> 4V

C.Piemonte et al IEEE TNS (2011) 

• Signal risetime < 5ns 
• CRT ~320ps (*) FWHM triggering at 5% height 
Both are much better than for different 
structures  with high Ctot and/or lower Cq, Rq
(risetime up to several x 10ns, CRT > 400ps)

??? peak shape is not scaling with ∆V
(non linearity in the F.Corsi etal  electrical model)
Can be corrected → energy resol. ~11% 

(*) ~40% from light propagation in crystals
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Conclusions
• Breakdown V decreases non linearly with T, as expected
        → better stability against T variations than at T room 
• Dark rate reduced by several orders of magnitude
        → tunneling mechanism(s) below ~200K
• After-pulsing at % level down to 100K; blow up below 100K
• PDE vs T: modulation up to ±50% wrt T room 
      → PDE decr. as T 300K → 250K, incr. as  T 250K → 120K, then freeze-out

• PDE vs λ: PDE peaks at lower λ as T decreases 
• Cross-talk and Gain (detector capacity) are independent of T (at fixed ∆V)
• Timing resolution improves at low T

SiPMs behave very well at low T, even better than at room T 
In the range 100K<T<200K SiPM perform optimally;
→ excellent alternatives to PMTs in cryogenic applications 
    (eg LAr, LXe... provided proper changes are made for PDE in XUV...)
→ Optimization for low T (quenching R, ...)
 

Properties 
at low T

Timing
Properties 

• Intrinsically ultra-fast devices: 
 time to breakdown and jitter < 100ps

• Not negligible non-gaussian tails (ns) for longer wavelengths 
• Smaller jitter for blue light than red (depends on the structure)
• Timing improves at low T
• Peculiar pulse shape → device optimization for timing   
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